JMLR Volume 10
-
Exploring Strategies for Training Deep Neural Networks
Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin (1):1−40, 2009 PDF BibTeX
-
Markov Properties for Linear Causal Models with Correlated Errors
-
An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
M. Pawan Kumar, Vladimir Kolmogorov, Philip H.S. Torr (3):71−106, 2009 PDF BibTeX
-
Refinement of Reproducing Kernels
-
Subgroup Analysis via Recursive Partitioning
Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, Bogong Li (5):141−158, 2009 PDF BibTeX
-
Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data
-
On The Power of Membership Queries in Agnostic Learning
-
Using Local Dependencies within Batches to Improve Large Margin Classifiers
Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, Bharat Rao (8):183−206, 2009 PDF BibTeX
-
Distance Metric Learning for Large Margin Nearest Neighbor Classification
Kilian Q. Weinberger, Lawrence K. Saul (9):207−244, 2009 PDF BibTeX
-
Data-driven Calibration of Penalties for Least-Squares Regression
-
Analysis of Perceptron-Based Active Learning
Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni (11):281−299, 2009 PDF BibTeX
-
Improving the Reliability of Causal Discovery from Small Data Sets Using Argumentation
Facundo Bromberg, Dimitris Margaritis (12):301−340, 2009 PDF BibTeX
-
Low-Rank Kernel Learning with Bregman Matrix Divergences
Brian Kulis, Mátyás A. Sustik, Inderjit S. Dhillon (13):341−376, 2009 PDF BibTeX
-
Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining
Petra Kralj Novak, Nada Lavrač, Geoffrey I. Webb (14):377−403, 2009 PDF BibTeX
-
Particle Swarm Model Selection
Hugo Jair Escalante, Manuel Montes, Luis Enrique Sucar (15):405−440, 2009 PDF BibTeX
-
Generalization Bounds for Ranking Algorithms via Algorithmic Stability
Shivani Agarwal, Partha Niyogi (16):441−474, 2009 PDF BibTeX
-
Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm
-
Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques
Barnabás Póczos, András Loőrincz (18):515−554, 2009 PDF BibTeX
-
On the Consistency of Feature Selection using Greedy Least Squares Regression
-
Online Learning with Sample Path Constraints
Shie Mannor, John N. Tsitsiklis, Jia Yuan Yu (20):569−590, 2009 PDF BibTeX
-
NEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM
Pradip Ghanty, Samrat Paul, Nikhil R. Pal (21):591−622, 2009 PDF BibTeX
-
Scalable Collaborative Filtering Approaches for Large Recommender Systems
Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk (22):623−656, 2009 PDF BibTeX
-
Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions
Sébastien Bubeck, Ulrike von Luxburg (23):657−698, 2009 PDF BibTeX
-
Properties of Monotonic Effects on Directed Acyclic Graphs
Tyler J. VanderWeele, James M. Robins (24):699−718, 2009 PDF BibTeX
-
On Efficient Large Margin Semisupervised Learning: Method and Theory
Junhui Wang, Xiaotong Shen, Wei Pan (25):719−742, 2009 PDF BibTeX
-
Nieme: Large-Scale Energy-Based Models
-
Similarity-based Classification: Concepts and Algorithms
Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, Luca Cazzanti (27):747−776, 2009 PDF BibTeX
-
Sparse Online Learning via Truncated Gradient
John Langford, Lihong Li, Tong Zhang (28):777−801, 2009 PDF BibTeX
-
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization
Jacob Abernethy, Francis Bach, Theodoros Evgeniou, Jean-Philippe Vert (29):803−826, 2009 PDF BibTeX
-
Consistency and Localizability
-
Stable and Efficient Gaussian Process Calculations
Leslie Foster, Alex Waagen, Nabeela Aijaz, Michael Hurley, Apolonio Luis, Joel Rinsky, Chandrika Satyavolu, Michael J. Way, Paul Gazis, Ashok Srivastava (31):857−882, 2009 PDF BibTeX
-
Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods
Holger Höfling, Robert Tibshirani (32):883−906, 2009 PDF BibTeX
-
Polynomial-Delay Enumeration of Monotonic Graph Classes
-
Java-ML: A Machine Learning Library
Thomas Abeel, Yves Van de Peer, Yvan Saeys (34):931−934, 2009 codePDF BibTeX
-
Nonextensive Information Theoretic Kernels on Measures
André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, Mário A. T. Figueiredo (35):935−975, 2009 PDF BibTeX
-
On Uniform Deviations of General Empirical Risks with Unboundedness, Dependence, and High Dimensionality
-
Fourier Theoretic Probabilistic Inference over Permutations
Jonathan Huang, Carlos Guestrin, Leonidas Guibas (37):997−1070, 2009 PDF BibTeX
-
An Algorithm for Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity
Jose M. Peña, Roland Nilsson, Johan Björkegren, Jesper Tegnér (38):1071−1094, 2009 PDF BibTeX
-
Universal Kernel-Based Learning with Applications to Regular Languages
Leonid (Aryeh) Kontorovich, Boaz Nadler (39):1095−1129, 2009 PDF BibTeX
-
Multi-task Reinforcement Learning in Partially Observable Stochastic Environments
Hui Li, Xuejun Liao, Lawrence Carin (40):1131−1186, 2009 PDF BibTeX
-
The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models
Ricardo Silva, Zoubin Ghahramani (41):1187−1238, 2009 PDF BibTeX
-
Incorporating Functional Knowledge in Neural Networks
Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia (42):1239−1262, 2009 PDF BibTeX
-
Perturbation Corrections in Approximate Inference: Mixture Modelling Applications
Ulrich Paquet, Ole Winther, Manfred Opper (43):1263−1304, 2009 PDF BibTeX
-
Robust Process Discovery with Artificial Negative Events
Stijn Goedertier, David Martens, Jan Vanthienen, Bart Baesens (44):1305−1340, 2009 PDF BibTeX
-
Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination
Eugene Tuv, Alexander Borisov, George Runger, Kari Torkkola (45):1341−1366, 2009 PDF BibTeX
-
A Parameter-Free Classification Method for Large Scale Learning
-
Model Monitor (M2): Evaluating, Comparing, and Monitoring Models
Troy Raeder, Nitesh V. Chawla (47):1387−1390, 2009 codePDF BibTeX
-
A Least-squares Approach to Direct Importance Estimation
Takafumi Kanamori, Shohei Hido, Masashi Sugiyama (48):1391−1445, 2009 PDF BibTeX
-
Classification with Gaussians and Convex Loss
Dao-Hong Xiang, Ding-Xuan Zhou (49):1447−1468, 2009 PDF BibTeX
-
Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks
Jean Hausser, Korbinian Strimmer (50):1469−1484, 2009 PDF BibTeX
-
Robustness and Regularization of Support Vector Machines
Huan Xu, Constantine Caramanis, Shie Mannor (51):1485−1510, 2009 PDF BibTeX
-
Strong Limit Theorems for the Bayesian Scoring Criterion in Bayesian Networks
Nikolai Slobodianik, Dmitry Zaporozhets, Neal Madras (52):1511−1526, 2009 PDF BibTeX
-
Bayesian Network Structure Learning by Recursive Autonomy Identification
Raanan Yehezkel, Boaz Lerner (53):1527−1570, 2009 PDF BibTeX
-
Learning Linear Ranking Functions for Beam Search with Application to Planning
Yuehua Xu, Alan Fern, Sungwook Yoon (54):1571−1610, 2009 PDF BibTeX
-
Marginal Likelihood Integrals for Mixtures of Independence Models
Shaowei Lin, Bernd Sturmfels, Zhiqiang Xu (55):1611−1631, 2009 PDF BibTeX
-
Transfer Learning for Reinforcement Learning Domains: A Survey
Matthew E. Taylor, Peter Stone (56):1633−1685, 2009 PDF BibTeX
-
Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification
Eitan Greenshtein, Junyong Park (57):1687−1704, 2009 PDF BibTeX
-
Learning Permutations with Exponential Weights
David P. Helmbold, Manfred K. Warmuth (58):1705−1736, 2009 PDF BibTeX
-
SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent
Antoine Bordes, Léon Bottou, Patrick Gallinari (59):1737−1754, 2009 PDF BibTeX
-
Dlib-ml: A Machine Learning Toolkit
-
Settable Systems: An Extension of Pearl's Causal Model with Optimization, Equilibrium, and Learning
-
Distributed Algorithms for Topic Models
David Newman, Arthur Asuncion, Padhraic Smyth, Max Welling (62):1801−1828, 2009 PDF BibTeX
-
Nonlinear Models Using Dirichlet Process Mixtures
Babak Shahbaba, Radford Neal (63):1829−1850, 2009 PDF BibTeX
-
CarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning
Roberto Esposito, Daniele P. Radicioni (64):1851−1880, 2009 PDF BibTeX
-
Learning Acyclic Probabilistic Circuits Using Test Paths
Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, Lev Reyzin (65):1881−1911, 2009 PDF BibTeX
-
Learning Approximate Sequential Patterns for Classification
Zeeshan Syed, Piotr Indyk, John Guttag (66):1913−1936, 2009 PDF BibTeX
-
Hybrid MPI/OpenMP Parallel Linear Support Vector Machine Training
Kristian Woodsend, Jacek Gondzio (67):1937−1953, 2009 PDF BibTeX
-
Provably Efficient Learning with Typed Parametric Models
Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy (68):1955−1988, 2009 PDF BibTeX
-
Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection
Jie Chen, Haw-ren Fang, Yousef Saad (69):1989−2012, 2009 PDF BibTeX
-
Ultrahigh Dimensional Feature Selection: Beyond The Linear Model
Jianqing Fan, Richard Samworth, Yichao Wu (70):2013−2038, 2009 PDF BibTeX
-
Evolutionary Model Type Selection for Global Surrogate Modeling
Dirk Gorissen, Tom Dhaene, Filip De Turck (71):2039−2078, 2009 PDF BibTeX
-
An Anticorrelation Kernel for Subsystem Training in Multiple Classifier Systems
Luciana Ferrer, Kemal Sönmez, Elizabeth Shriberg (72):2079−2114, 2009 PDF BibTeX
-
Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods
Christian Rieger, Barbara Zwicknagl (73):2115−2132, 2009 PDF BibTeX
-
RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments
Brian Tanner, Adam White (74):2133−2136, 2009 codePDF BibTeX
-
Discriminative Learning Under Covariate Shift
Steffen Bickel, Michael Brückner, Tobias Scheffer (75):2137−2155, 2009 PDF BibTeX
-
Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Vojtěch Franc, Sören Sonnenburg (76):2157−2192, 2009 PDF BibTeX
-
Margin-based Ranking and an Equivalence between AdaBoost and RankBoost
Cynthia Rudin, Robert E. Schapire (77):2193−2232, 2009 PDF BibTeX
-
The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
-
Learning Nondeterministic Classifiers
Juan José del Coz, Jorge Díez, Antonio Bahamonde (79):2273−2293, 2009 PDF BibTeX
-
The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs
Han Liu, John Lafferty, Larry Wasserman (80):2295−2328, 2009 PDF BibTeX
-
Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors
Mathias Drton, Michael Eichler, Thomas S. Richardson (81):2329−2348, 2009 PDF BibTeX
-
Estimating Labels from Label Proportions
Novi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le (82):2349−2374, 2009 PDF BibTeX
-
Exploiting Product Distributions to Identify Relevant Variables of Correlation Immune Functions
Lisa Hellerstein, Bernard Rosell, Eric Bach, Soumya Ray, David Page (83):2375−2411, 2009 PDF BibTeX
-
Reinforcement Learning in Finite MDPs: PAC Analysis
Alexander L. Strehl, Lihong Li, Michael L. Littman (84):2413−2444, 2009 PDF BibTeX
-
Prediction With Expert Advice For The Brier Game
Vladimir Vovk, Fedor Zhdanov (85):2445−2471, 2009 PDF BibTeX
-
Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression
-
When Is There a Representer Theorem? Vector Versus Matrix Regularizers
Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil (87):2507−2529, 2009 PDF BibTeX
-
Maximum Entropy Discrimination Markov Networks
-
Learning When Concepts Abound
Omid Madani, Michael Connor, Wiley Greiner (89):2571−2613, 2009 PDF BibTeX
-
Hash Kernels for Structured Data
Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, S.V.N. Vishwanathan (90):2615−2637, 2009 PDF BibTeX
-
DL-Learner: Learning Concepts in Description Logics
-
Bounded Kernel-Based Online Learning
Francesco Orabona, Joseph Keshet, Barbara Caputo (92):2643−2666, 2009 PDF BibTeX
-
Structure Spaces
Brijnesh J. Jain, Klaus Obermayer (93):2667−2714, 2009 PDF BibTeX
-
Learning Halfspaces with Malicious Noise
Adam R. Klivans, Philip M. Long, Rocco A. Servedio (94):2715−2740, 2009 PDF BibTeX
-
Reproducing Kernel Banach Spaces for Machine Learning
Haizhang Zhang, Yuesheng Xu, Jun Zhang (95):2741−2775, 2009 PDF BibTeX
-
Cautious Collective Classification
Luke K. McDowell, Kalyan Moy Gupta, David W. Aha (96):2777−2836, 2009 PDF BibTeX
-
Adaptive False Discovery Rate Control under Independence and Dependence
Gilles Blanchard, Étienne Roquain (97):2837−2871, 2009 PDF BibTeX
-
Online Learning with Samples Drawn from Non-identical Distributions
-
Efficient Online and Batch Learning Using Forward Backward Splitting
-
A Survey of Accuracy Evaluation Metrics of Recommendation Tasks
Asela Gunawardana, Guy Shani (100):2935−2962, 2009 PDF BibTeX