JMLR Volume 22
-
On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests
Krishnakumar Balasubramanian, Tong Li, Ming Yuan (1):1−45, 2021 PDF BibTeX
-
Domain Generalization by Marginal Transfer Learning
Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, Clayton Scott (2):1−55, 2021 codePDF BibTeX
-
Regulating Greed Over Time in Multi-Armed Bandits
Stefano Tracà, Cynthia Rudin, Weiyu Yan (3):1−99, 2021 codePDF BibTeX
-
An Empirical Study of Bayesian Optimization: Acquisition Versus Partition
Erich Merrill, Alan Fern, Xiaoli Fern, Nima Dolatnia (4):1−25, 2021 codePDF BibTeX
-
The Decoupled Extended Kalman Filter for Dynamic Exponential-Family Factorization Models
Carlos A. Gomez-Uribe, Brian Karrer (5):1−25, 2021 PDF BibTeX
-
Consistent estimation of small masses in feature sampling
Fadhel Ayed, Marco Battiston, Federico Camerlenghi, Stefano Favaro (6):1−28, 2021 PDF BibTeX
-
Preference-based Online Learning with Dueling Bandits: A Survey
Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, Eyke Hüllermeier (7):1−108, 2021 PDF BibTeX
-
A Unified Framework for Random Forest Prediction Error Estimation
-
Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm
Defeng Sun, Kim-Chuan Toh, Yancheng Yuan (9):1−32, 2021 PDF BibTeX
-
Mixing Time of Metropolis-Hastings for Bayesian Community Detection
-
Unfolding-Model-Based Visualization: Theory, Method and Applications
Yunxiao Chen, Zhiliang Ying, Haoran Zhang (11):1−51, 2021 codePDF BibTeX
-
Global and Quadratic Convergence of Newton Hard-Thresholding Pursuit
Shenglong Zhou, Naihua Xiu, Hou-Duo Qi (12):1−45, 2021 PDF BibTeX
-
Homogeneity Structure Learning in Large-scale Panel Data with Heavy-tailed Errors
-
On Multi-Armed Bandit Designs for Dose-Finding Trials
Maryam Aziz, Emilie Kaufmann, Marie-Karelle Riviere (14):1−38, 2021 PDF BibTeX
-
Simple and Fast Algorithms for Interactive Machine Learning with Random Counter-examples
-
Pykg2vec: A Python Library for Knowledge Graph Embedding
Shih-Yuan Yu, Sujit Rokka Chhetri, Arquimedes Canedo, Palash Goyal, Mohammad Abdullah Al Faruque (16):1−6, 2021 codePDF BibTeX
-
Continuous Time Analysis of Momentum Methods
Nikola B. Kovachki, Andrew M. Stuart (17):1−40, 2021 supplementaryPDF BibTeX
-
A Unified Sample Selection Framework for Output Noise Filtering: An Error-Bound Perspective
Gaoxia Jiang, Wenjian Wang, Yuhua Qian, Jiye Liang (18):1−66, 2021 PDF BibTeX
-
Ranking and synchronization from pairwise measurements via SVD
Alexandre d'Aspremont, Mihai Cucuringu, Hemant Tyagi (19):1−63, 2021 PDF BibTeX
-
Aggregated Hold-Out
Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (20):1−55, 2021 PDF BibTeX
-
A Fast Globally Linearly Convergent Algorithm for the Computation of Wasserstein Barycenters
Lei Yang, Jia Li, Defeng Sun, Kim-Chuan Toh (21):1−37, 2021 PDF BibTeX
-
When random initializations help: a study of variational inference for community detection
Purnamrita Sarkar, Y. X. Rachel Wang, Soumendu S. Mukherjee (22):1−46, 2021 PDF BibTeX
-
A Two-Level Decomposition Framework Exploiting First and Second Order Information for SVM Training Problems
Giulio Galvan, Matteo Lapucci, Chih-Jen Lin, Marco Sciandrone (23):1−38, 2021 PDF BibTeX
-
Entangled Kernels - Beyond Separability
-
Generalization Performance of Multi-pass Stochastic Gradient Descent with Convex Loss Functions
-
Finite Time LTI System Identification
Tuhin Sarkar, Alexander Rakhlin, Munther A. Dahleh (26):1−61, 2021 PDF BibTeX
-
Inference In High-dimensional Single-Index Models Under Symmetric Designs
Hamid Eftekhari, Moulinath Banerjee, Ya'acov Ritov (27):1−63, 2021 codePDF BibTeX
-
Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits
-
Single and Multiple Change-Point Detection with Differential Privacy
Wanrong Zhang, Sara Krehbiel, Rui Tuo, Yajun Mei, Rachel Cummings (29):1−36, 2021 PDF BibTeX
-
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer, Scott Niekum, George Konidaris (30):1−82, 2021 PDF BibTeX
-
FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference
Tianyu Wang, Marco Morucci, M. Usaid Awan, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky (31):1−41, 2021 websitePDF BibTeX
-
Learning interaction kernels in heterogeneous systems of agents from multiple trajectories
Fei Lu, Mauro Maggioni, Sui Tang (32):1−67, 2021 codePDF BibTeX
-
Asynchronous Online Testing of Multiple Hypotheses
Tijana Zrnic, Aaditya Ramdas, Michael I. Jordan (33):1−39, 2021 PDF BibTeX
-
Neighborhood Structure Assisted Non-negative Matrix Factorization and Its Application in Unsupervised Point-wise Anomaly Detection
Imtiaz Ahmed, Xia Ben Hu, Mithun P. Acharya, Yu Ding (34):1−32, 2021 codePDF BibTeX
-
Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation
-
Multi-class Gaussian Process Classification with Noisy Inputs
Carlos Villacampa-Calvo, Bryan Zaldívar, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato (36):1−52, 2021 codePDF BibTeX
-
A Bayesian Contiguous Partitioning Method for Learning Clustered Latent Variables
Zhao Tang Luo, Huiyan Sang, Bani Mallick (37):1−52, 2021 PDF BibTeX
-
Risk-Averse Learning by Temporal Difference Methods with Markov Risk Measures
-
giotto-tda: : A Topological Data Analysis Toolkit for Machine Learning and Data Exploration
Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, Kathryn Hess (39):1−6, 2021 codePDF BibTeX
-
Residual Energy-Based Models for Text
Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott, Marc'Aurelio Ranzato, Arthur Szlam (40):1−41, 2021 PDF BibTeX
-
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction
Henning Lange, Steven L. Brunton, J. Nathan Kutz (41):1−38, 2021 codePDF BibTeX
-
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan (42):1−41, 2021 PDF BibTeX
-
Banach Space Representer Theorems for Neural Networks and Ridge Splines
-
Wasserstein barycenters can be computed in polynomial time in fixed dimension
Jason M Altschuler, Enric Boix-Adsera (44):1−19, 2021 codePDF BibTeX
-
RaSE: Random Subspace Ensemble Classification
-
Optimal Structured Principal Subspace Estimation: Metric Entropy and Minimax Rates
-
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory
-
Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression
Behzad Azmi, Dante Kalise, Karl Kunisch (48):1−32, 2021 PDF BibTeX
-
From Low Probability to High Confidence in Stochastic Convex Optimization
Damek Davis, Dmitriy Drusvyatskiy, Lin Xiao, Junyu Zhang (49):1−38, 2021 PDF BibTeX
-
Structure Learning of Undirected Graphical Models for Count Data
Nguyen Thi Kim Hue, Monica Chiogna (50):1−53, 2021 PDF BibTeX
-
Projection-free Decentralized Online Learning for Submodular Maximization over Time-Varying Networks
Junlong Zhu, Qingtao Wu, Mingchuan Zhang, Ruijuan Zheng, Keqin Li (51):1−42, 2021 PDF BibTeX
-
Sparse and Smooth Signal Estimation: Convexification of L0-Formulations
Alper Atamturk, Andres Gomez, Shaoning Han (52):1−43, 2021 PDF BibTeX
-
Subspace Clustering through Sub-Clusters
Weiwei Li, Jan Hannig, Sayan Mukherjee (53):1−37, 2021 PDF BibTeX
-
GemBag: Group Estimation of Multiple Bayesian Graphical Models
Xinming Yang, Lingrui Gan, Naveen N. Narisetty, Feng Liang (54):1−48, 2021 PDF BibTeX
-
Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data
-
Incorporating Unlabeled Data into Distributionally Robust Learning
Charlie Frogner, Sebastian Claici, Edward Chien, Justin Solomon (56):1−46, 2021 PDF BibTeX
-
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan (57):1−64, 2021 PDF BibTeX
-
Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach
-
Predictive Learning on Hidden Tree-Structured Ising Models
Konstantinos E. Nikolakakis, Dionysios S. Kalogerias, Anand D. Sarwate (59):1−82, 2021 codePDF BibTeX
-
A Distributed Method for Fitting Laplacian Regularized Stratified Models
Jonathan Tuck, Shane Barratt, Stephen Boyd (60):1−37, 2021 codePDF BibTeX
-
Stochastic Proximal AUC Maximization
-
How to Gain on Power: Novel Conditional Independence Tests Based on Short Expansion of Conditional Mutual Information
Mariusz Kubkowski, Jan Mielniczuk, Paweł Teisseyre (62):1−57, 2021 PDF BibTeX
-
Geometric structure of graph Laplacian embeddings
Nicolás García Trillos, Franca Hoffmann, Bamdad Hosseini (63):1−55, 2021 PDF BibTeX
-
Sparse Tensor Additive Regression
Botao Hao, Boxiang Wang, Pengyuan Wang, Jingfei Zhang, Jian Yang, Will Wei Sun (64):1−43, 2021 PDF BibTeX
-
Dynamic Tensor Recommender Systems
Yanqing Zhang, Xuan Bi, Niansheng Tang, Annie Qu (65):1−35, 2021 PDF BibTeX
-
Approximate Newton Methods
Haishan Ye, Luo Luo, Zhihua Zhang (66):1−41, 2021 PDF BibTeX
-
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
Trambak Banerjee, Qiang Liu, Gourab Mukherjee, Wengunag Sun (67):1−46, 2021 PDF BibTeX
-
Path Length Bounds for Gradient Descent and Flow
Chirag Gupta, Sivaraman Balakrishnan, Aaditya Ramdas (68):1−63, 2021 blogPDF BibTeX
-
Determining the Number of Communities in Degree-corrected Stochastic Block Models
Shujie Ma, Liangjun Su, Yichong Zhang (69):1−63, 2021 PDF BibTeX
-
Testing Conditional Independence via Quantile Regression Based Partial Copulas
Lasse Petersen, Niels Richard Hansen (70):1−47, 2021 codePDF BibTeX
-
Phase Diagram for Two-layer ReLU Neural Networks at Infinite-width Limit
Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang (71):1−47, 2021 codePDF BibTeX
-
Prediction against a limited adversary
Erhan Bayraktar, Ibrahim Ekren, Xin Zhang (72):1−33, 2021 PDF BibTeX
-
Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic Perspectives
Michael Muehlebach, Michael I. Jordan (73):1−50, 2021 PDF BibTeX
-
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, Ghislain Durif (74):1−6, 2021 codePDF BibTeX
-
Attention is Turing-Complete
Jorge Pérez, Pablo Barceló, Javier Marinkovic (75):1−35, 2021 PDF BibTeX
-
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
-
ChainerRL: A Deep Reinforcement Learning Library
Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, Takahiro Ishikawa (77):1−14, 2021 codePDF BibTeX
-
POT: Python Optimal Transport
Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer (78):1−8, 2021 codePDF BibTeX
-
Is SGD a Bayesian sampler? Well, almost
Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis (79):1−64, 2021 PDF BibTeX
-
Communication-Efficient Distributed Covariance Sketch, with Application to Distributed PCA
Zengfeng Huang, Xuemin Lin, Wenjie Zhang, Ying Zhang (80):1−38, 2021 PDF BibTeX
-
Knowing what You Know: valid and validated confidence sets in multiclass and multilabel prediction
Maxime Cauchois, Suyash Gupta, John C. Duchi (81):1−42, 2021 PDF BibTeX
-
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker Tresp, Jens Lehmann (82):1−6, 2021 PDF BibTeX
-
Statistical Query Lower Bounds for Tensor PCA
-
Variance Reduced Median-of-Means Estimator for Byzantine-Robust Distributed Inference
Jiyuan Tu, Weidong Liu, Xiaojun Mao, Xi Chen (84):1−67, 2021 PDF BibTeX
-
Gradient Methods Never Overfit On Separable Data
-
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas Damianou, Neil D. Lawrence, Carl Henrik Ek (86):1−51, 2021 PDF BibTeX
-
On Solving Probabilistic Linear Diophantine Equations
Patrick Kreitzberg, Oliver Serang (87):1−24, 2021 codePDF BibTeX
-
Edge Sampling Using Local Network Information
-
Bayesian Text Classification and Summarization via A Class-Specified Topic Model
Feifei Wang, Junni L. Zhang, Yichao Li, Ke Deng, Jun S. Liu (89):1−48, 2021 PDF BibTeX
-
Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs
Tomer Galanti, Sagie Benaim, Lior Wolf (90):1−42, 2021 codePDF BibTeX
-
Analysis of high-dimensional Continuous Time Markov Chains using the Local Bouncy Particle Sampler
Tingting Zhao, Alexandre Bouchard-Côté (91):1−41, 2021 codePDF BibTeX
-
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios, Cody Hyndman (92):1−51, 2021 codePDF BibTeX
-
Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage
Zhengrong Xing, Peter Carbonetto, Matthew Stephens (93):1−28, 2021 codePDF BibTeX
-
Consistent Semi-Supervised Graph Regularization for High Dimensional Data
-
Histogram Transform Ensembles for Large-scale Regression
Hanyuan Hang, Zhouchen Lin, Xiaoyu Liu, Hongwei Wen (95):1−87, 2021 PDF BibTeX
-
Guided Visual Exploration of Relations in Data Sets
Kai Puolamäki, Emilia Oikarinen, Andreas Henelius (96):1−32, 2021 codePDF BibTeX
-
Safe Policy Iteration: A Monotonically Improving Approximate Policy Iteration Approach
Alberto Maria Metelli, Matteo Pirotta, Daniele Calandriello, Marcello Restelli (97):1−83, 2021 PDF BibTeX
-
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal, Sham M. Kakade, Jason D. Lee, Gaurav Mahajan (98):1−76, 2021 PDF BibTeX
-
Adaptive estimation of nonparametric functionals
Lin Liu, Rajarshi Mukherjee, James M. Robins, Eric Tchetgen Tchetgen (99):1−66, 2021 PDF BibTeX
-
OpenML-Python: an extensible Python API for OpenML
Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, Frank Hutter (100):1−5, 2021 codePDF BibTeX
-
LocalGAN: Modeling Local Distributions for Adversarial Response Generation
Baoxun Wang, Zhen Xu, Huan Zhang, Kexin Qiu, Deyuan Zhang, Chengjie Sun (101):1−29, 2021 codePDF BibTeX
-
Learning a High-dimensional Linear Structural Equation Model via l1-Regularized Regression
Gunwoong Park, Sang Jun Moon, Sion Park, Jong-June Jeon (102):1−41, 2021 PDF BibTeX
-
A Unified Analysis of First-Order Methods for Smooth Games via Integral Quadratic Constraints
Guodong Zhang, Xuchan Bao, Laurent Lessard, Roger Grosse (103):1−39, 2021 codePDF BibTeX
-
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek, Pascal Sturmfels, Su-In Lee (104):1−54, 2021 codePDF BibTeX
-
Pathwise Conditioning of Gaussian Processes
James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, Marc Peter Deisenroth (105):1−47, 2021 codePDF BibTeX
-
Online stochastic gradient descent on non-convex losses from high-dimensional inference
Gerard Ben Arous, Reza Gheissari, Aukosh Jagannath (106):1−51, 2021 PDF BibTeX
-
Beyond English-Centric Multilingual Machine Translation
Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Michael Auli, Armand Joulin (107):1−48, 2021 codePDF BibTeX
-
Towards a Unified Analysis of Random Fourier Features
Zhu Li, Jean-Francois Ton, Dino Oglic, Dino Sejdinovic (108):1−51, 2021 PDF BibTeX
-
mvlearn: Multiview Machine Learning in Python
Ronan Perry, Gavin Mischler, Richard Guo, Theodore Lee, Alexander Chang, Arman Koul, Cameron Franz, Hugo Richard, Iain Carmichael, Pierre Ablin, Alexandre Gramfort, Joshua T. Vogelstein (109):1−7, 2021 codePDF BibTeX
-
River: machine learning for streaming data in Python
Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, Albert Bifet (110):1−8, 2021 codePDF BibTeX
-
Non-parametric Quantile Regression via the K-NN Fused Lasso
Steven Siwei Ye, Oscar Hernan Madrid Padilla (111):1−38, 2021 codePDF BibTeX
-
L-SVRG and L-Katyusha with Arbitrary Sampling
Xun Qian, Zheng Qu, Peter Richtárik (112):1−47, 2021 PDF BibTeX
-
A Lyapunov Analysis of Accelerated Methods in Optimization
Ashia C. Wilson, Ben Recht, Michael I. Jordan (113):1−34, 2021 PDF BibTeX
-
NUQSGD: Provably Communication-efficient Data-parallel SGD via Nonuniform Quantization
Ali Ramezani-Kebrya, Fartash Faghri, Ilya Markov, Vitalii Aksenov, Dan Alistarh, Daniel M. Roy (114):1−43, 2021 PDF BibTeX
-
Stochastic Proximal Methods for Non-Smooth Non-Convex Constrained Sparse Optimization
-
An Importance Weighted Feature Selection Stability Measure
-
Strong Consistency, Graph Laplacians, and the Stochastic Block Model
Shaofeng Deng, Shuyang Ling, Thomas Strohmer (117):1−44, 2021 PDF BibTeX
-
A General Framework for Adversarial Label Learning
Chidubem Arachie, Bert Huang (118):1−33, 2021 codePDF BibTeX
-
Some Theoretical Insights into Wasserstein GANs
Gérard Biau, Maxime Sangnier, Ugo Tanielian (119):1−45, 2021 PDF BibTeX
-
Empirical Bayes Matrix Factorization
-
Langevin Dynamics for Adaptive Inverse Reinforcement Learning of Stochastic Gradient Algorithms
Vikram Krishnamurthy, George Yin (121):1−49, 2021 PDF BibTeX
-
Sparse Convex Optimization via Adaptively Regularized Hard Thresholding
Kyriakos Axiotis, Maxim Sviridenko (122):1−47, 2021 PDF BibTeX
-
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne, François-Xavier Briol, Mark Girolami (123):1−40, 2021 PDF BibTeX
-
A flexible model-free prediction-based framework for feature ranking
Jingyi Jessica Li, Yiling Elaine Chen, Xin Tong (124):1−54, 2021 codePDF BibTeX
-
Bandit Convex Optimization in Non-stationary Environments
Peng Zhao, Guanghui Wang, Lijun Zhang, Zhi-Hua Zhou (125):1−45, 2021 PDF BibTeX
-
Integrative High Dimensional Multiple Testing with Heterogeneity under Data Sharing Constraints
Molei Liu, Yin Xia, Kelly Cho, Tianxi Cai (126):1−26, 2021 PDF BibTeX
-
LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri, Feng Ruan, Louis Abraham, Robert Tibshirani (127):1−29, 2021 codePDF BibTeX
-
Optimal Bounds between f-Divergences and Integral Probability Metrics
-
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Niladri S. Chatterji, Philip M. Long (129):1−30, 2021 PDF BibTeX
-
Learning Whenever Learning is Possible: Universal Learning under General Stochastic Processes
-
MushroomRL: Simplifying Reinforcement Learning Research
Carlo D'Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters (131):1−5, 2021 codePDF BibTeX
-
Locally Differentially-Private Randomized Response for Discrete Distribution Learning
Adriano Pastore, Michael Gastpar (132):1−56, 2021 PDF BibTeX
-
A Contextual Bandit Bake-off
Alberto Bietti, Alekh Agarwal, John Langford (133):1−49, 2021 codePDF BibTeX
-
An Inertial Newton Algorithm for Deep Learning
Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels (134):1−31, 2021 codePDF BibTeX
-
Learning Sparse Classifiers: Continuous and Mixed Integer Optimization Perspectives
Antoine Dedieu, Hussein Hazimeh, Rahul Mazumder (135):1−47, 2021 codePDF BibTeX
-
Implicit Langevin Algorithms for Sampling From Log-concave Densities
Liam Hodgkinson, Robert Salomone, Fred Roosta (136):1−30, 2021 PDF BibTeX
-
Hybrid Predictive Models: When an Interpretable Model Collaborates with a Black-box Model
-
An algorithmic view of L2 regularization and some path-following algorithms
-
Hoeffding's Inequality for General Markov Chains and Its Applications to Statistical Learning
Jianqing Fan, Bai Jiang, Qiang Sun (139):1−35, 2021 PDF BibTeX
-
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu, Lei Shi, Xiaolin Huang, Jie Yang, Johan A.K. Suykens (140):1−38, 2021 PDF BibTeX
-
Pseudo-Marginal Hamiltonian Monte Carlo
Johan Alenlöv, Arnoud Doucet, Fredrik Lindsten (141):1−45, 2021 PDF BibTeX
-
Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace
Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, Joshua T. Vogelstein (142):1−49, 2021 codePDF BibTeX
-
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka, Cristian Sminchisescu (143):1−34, 2021 PDF BibTeX
-
Individual Fairness in Hindsight
-
On efficient multilevel Clustering via Wasserstein distances
Viet Huynh, Nhat Ho, Nhan Dam, XuanLong Nguyen, Mikhail Yurochkin, Hung Bui, Dinh Phung (145):1−43, 2021 PDF BibTeX
-
Nonparametric Modeling of Higher-Order Interactions via Hypergraphons
-
Optimal Minimax Variable Selection for Large-Scale Matrix Linear Regression Model
Meiling Hao, Lianqiang Qu, Dehan Kong, Liuquan Sun, Hongtu Zhu (147):1−39, 2021 PDF BibTeX
-
Statistical guarantees for local graph clustering
Wooseok Ha, Kimon Fountoulakis, Michael W. Mahoney (148):1−54, 2021 PDF BibTeX
-
Hyperparameter Optimization via Sequential Uniform Designs
-
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong, Cong Ma, Yuejie Chi (150):1−63, 2021 codePDF BibTeX
-
Universal consistency and rates of convergence of multiclass prototype algorithms in metric spaces
-
Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models
Antonio Blanca, Zongchen Chen, Daniel Štefankovič, Eric Vigoda (152):1−56, 2021 PDF BibTeX
-
Factorization Machines with Regularization for Sparse Feature Interactions
Kyohei Atarashi, Satoshi Oyama, Masahito Kurihara (153):1−50, 2021 PDF BibTeX
-
Kernel Smoothing, Mean Shift, and Their Learning Theory with Directional Data
-
What Causes the Test Error? Going Beyond Bias-Variance via ANOVA
-
A Greedy Algorithm for Quantizing Neural Networks
-
The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks
Takuo Matsubara, Chris J. Oates, François-Xavier Briol (157):1−57, 2021 PDF BibTeX
-
Information criteria for non-normalized models
Takeru Matsuda, Masatoshi Uehara, Aapo Hyvarinen (158):1−33, 2021 PDF BibTeX
-
When Does Gradient Descent with Logistic Loss Find Interpolating Two-Layer Networks?
Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett (159):1−48, 2021 PDF BibTeX
-
Are We Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit, Alexander I. Cowen-Rivers, Rasul Tutunov, Ryan-Rhys Griffiths, Jun Wang, Haitham Bou-Ammar (160):1−78, 2021 codePDF BibTeX
-
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning
Tim van Erven, Wouter M. Koolen, Dirk van der Hoeven (161):1−61, 2021 codePDF BibTeX
-
Counterfactual Mean Embeddings
Krikamol Muandet, Motonobu Kanagawa, Sorawit Saengkyongam, Sanparith Marukatat (162):1−71, 2021 codePDF BibTeX
-
PeerReview4All: Fair and Accurate Reviewer Assignment in Peer Review
Ivan Stelmakh, Nihar Shah, Aarti Singh (163):1−66, 2021 PDF BibTeX
-
Improving Reproducibility in Machine Learning Research(A Report from the NeurIPS 2019 Reproducibility Program)
Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer, Florence d'Alche-Buc, Emily Fox, Hugo Larochelle (164):1−20, 2021 PDF BibTeX
-
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin, Michael W. Mahoney (165):1−73, 2021 PDF BibTeX
-
The ensmallen library for flexible numerical optimization
Ryan R. Curtin, Marcus Edel, Rahul Ganesh Prabhu, Suryoday Basak, Zhihao Lou, Conrad Sanderson (166):1−6, 2021 codePDF BibTeX
-
Estimation and Optimization of Composite Outcomes
Daniel J. Luckett, Eric B. Laber, Siyeon Kim, Michael R. Kosorok (167):1−40, 2021 PDF BibTeX
-
Asymptotic Normality, Concentration, and Coverage of Generalized Posteriors
-
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems
Mingrui Liu, Hassan Rafique, Qihang Lin, Tianbao Yang (169):1−34, 2021 PDF BibTeX
-
Black-Box Reductions for Zeroth-Order Gradient Algorithms to Achieve Lower Query Complexity
Bin Gu, Xiyuan Wei, Shangqian Gao, Ziran Xiong, Cheng Deng, Heng Huang (170):1−47, 2021 PDF BibTeX
-
Optimal Rates of Distributed Regression with Imperfect Kernels
-
Unlinked Monotone Regression
Fadoua Balabdaoui, Charles R. Doss, Cécile Durot (172):1−60, 2021 PDF BibTeX
-
Replica Exchange for Non-Convex Optimization
-
Achieving Fairness in the Stochastic Multi-Armed Bandit Problem
Vishakha Patil, Ganesh Ghalme, Vineet Nair, Y. Narahari (174):1−31, 2021 PDF BibTeX
-
Doubly infinite residual neural networks: a diffusion process approach
Stefano Peluchetti, Stefano Favaro (175):1−48, 2021 PDF BibTeX
-
Locally Private k-Means Clustering
-
Prediction Under Latent Factor Regression: Adaptive PCR, Interpolating Predictors and Beyond
Xin Bing, Florentina Bunea, Seth Strimas-Mackey, Marten Wegkamp (177):1−50, 2021 PDF BibTeX
-
Conditional independences and causal relations implied by sets of equations
Tineke Blom, Mirthe M. van Diepen, Joris M. Mooij (178):1−62, 2021 PDF BibTeX
-
A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration
Yuetian Luo, Garvesh Raskutti, Ming Yuan, Anru R. Zhang (179):1−48, 2021 PDF BibTeX
-
Improved Shrinkage Prediction under a Spiked Covariance Structure
Trambak Banerjee, Gourab Mukherjee, Debashis Paul (180):1−40, 2021 PDF BibTeX
-
Alibi Explain: Algorithms for Explaining Machine Learning Models
Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, Alexandru Coca (181):1−7, 2021 codePDF BibTeX
-
A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning
Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D'Eramo, Jan Peters, Joni Pajarinen (182):1−52, 2021 codePDF BibTeX
-
Benchmarking Unsupervised Object Representations for Video Sequences
Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas Geiger, Alexander S. Ecker (183):1−61, 2021 codePDF BibTeX
-
mlr3pipelines - Flexible Machine Learning Pipelines in R
Martin Binder, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, Bernd Bischl (184):1−7, 2021 codePDF BibTeX
-
Mode-wise Tensor Decompositions: Multi-dimensional Generalizations of CUR Decompositions
HanQin Cai, Keaton Hamm, Longxiu Huang, Deanna Needell (185):1−36, 2021 codePDF BibTeX
-
As You Like It: Localization via Paired Comparisons
Andrew K. Massimino, Mark A. Davenport (186):1−39, 2021 PDF BibTeX
-
Matrix Product States for Inference in Discrete Probabilistic Models
Rasmus Bonnevie, Mikkel N. Schmidt (187):1−48, 2021 PDF BibTeX
-
Differentially Private Regression and Classification with Sparse Gaussian Processes
Michael Thomas Smith, Mauricio A. Alvarez, Neil D. Lawrence (188):1−41, 2021 codePDF BibTeX
-
One-Shot Federated Learning: Theoretical Limits and Algorithms to Achieve Them
Saber Salehkaleybar, Arsalan Sharifnassab, S. Jamaloddin Golestani (189):1−47, 2021 codePDF BibTeX
-
Collusion Detection and Ground Truth Inference in Crowdsourcing for Labeling Tasks
Changyue Song, Kaibo Liu, Xi Zhang (190):1−45, 2021 PDF BibTeX
-
On the Estimation of Network Complexity: Dimension of Graphons
-
Method of Contraction-Expansion (MOCE) for Simultaneous Inference in Linear Models
Fei Wang, Ling Zhou, Lu Tang, Peter X.K. Song (192):1−32, 2021 PDF BibTeX
-
Sparse Popularity Adjusted Stochastic Block Model
Majid Noroozi, Marianna Pensky, Ramchandra Rimal (193):1−36, 2021 PDF BibTeX
-
Limit theorems for out-of-sample extensions of the adjacency and Laplacian spectral embeddings
Keith D. Levin, Fred Roosta, Minh Tang, Michael W. Mahoney, Carey E. Priebe (194):1−59, 2021 PDF BibTeX
-
Learning Laplacian Matrix from Graph Signals with Sparse Spectral Representation
Pierre Humbert, Batiste Le Bars, Laurent Oudre, Argyris Kalogeratos, Nicolas Vayatis (195):1−47, 2021 codePDF BibTeX
-
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu, Yue Wang, Xiang Chen, Zhi Tian (196):1−35, 2021 PDF BibTeX
-
Particle-Gibbs Sampling for Bayesian Feature Allocation Models
Alexandre Bouchard-Côté, Andrew Roth (197):1−105, 2021 codePDF BibTeX
-
Integrated Principal Components Analysis
Tiffany M. Tang, Genevera I. Allen (198):1−71, 2021 codePDF BibTeX
-
On ADMM in Deep Learning: Convergence and Saturation-Avoidance
Jinshan Zeng, Shao-Bo Lin, Yuan Yao, Ding-Xuan Zhou (199):1−67, 2021 PDF BibTeX
-
Refined approachability algorithms and application to regret minimization with global costs
-
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization
Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik (201):1−73, 2021 codePDF BibTeX
-
Interpretable Deep Generative Recommendation Models
Huafeng Liu, Liping Jing, Jingxuan Wen, Pengyu Xu, Jiaqi Wang, Jian Yu, Michael K. Ng (202):1−54, 2021 PDF BibTeX
-
Learning partial correlation graphs and graphical models by covariance queries
Gábor Lugosi, Jakub Truszkowski, Vasiliki Velona, Piotr Zwiernik (203):1−41, 2021 PDF BibTeX
-
Failures of Model-dependent Generalization Bounds for Least-norm Interpolation
Peter L. Bartlett, Philip M. Long (204):1−15, 2021 PDF BibTeX
-
Langevin Monte Carlo: random coordinate descent and variance reduction
-
Hamilton-Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems with Lipschitz Continuous Controls
Jeongho Kim, Jaeuk Shin, Insoon Yang (206):1−34, 2021 codePDF BibTeX
-
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, Marten van Dijk (207):1−44, 2021 PDF BibTeX
-
Oblivious Data for Fairness with Kernels
Steffen Grünewälder, Azadeh Khaleghi (208):1−36, 2021 codePDF BibTeX
-
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert, Scott Lundberg, Su-In Lee (209):1−90, 2021 codePDF BibTeX
-
Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks
Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, Adish Singla (210):1−45, 2021 codePDF BibTeX
-
Bandit Learning in Decentralized Matching Markets
Lydia T. Liu, Feng Ruan, Horia Mania, Michael I. Jordan (211):1−34, 2021 PDF BibTeX
-
Convex Geometry and Duality of Over-parameterized Neural Networks
-
Cooperative SGD: A Unified Framework for the Design and Analysis of Local-Update SGD Algorithms
-
dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python
Hubert Baniecki, Wojciech Kretowicz, Piotr Piątyszek, Jakub Wiśniewski, Przemysław Biecek (214):1−7, 2021 codePDF BibTeX
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
Paweł Rościszewski, Michał Martyniak, Filip Schodowski (215):1−5, 2021 codePDF BibTeX
-
Context-dependent Networks in Multivariate Time Series: Models, Methods, and Risk Bounds in High Dimensions
Lili Zheng, Garvesh Raskutti, Rebecca Willett, Benjamin Mark (216):1−88, 2021 PDF BibTeX
-
A Unified Framework for Spectral Clustering in Sparse Graphs
Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay (217):1−56, 2021 PDF BibTeX
-
Thompson Sampling Algorithms for Cascading Bandits
Zixin Zhong, Wang Chi Chueng, Vincent Y. F. Tan (218):1−66, 2021 PDF BibTeX
-
Soft Tensor Regression
Georgia Papadogeorgou, Zhengwu Zhang, David B. Dunson (219):1−53, 2021 PDF BibTeX
-
Shape-Enforcing Operators for Generic Point and Interval Estimators of Functions
Xi Chen, Victor Chernozhukov, Ivan Fernandez-Val, Scott Kostyshak, Ye Luo (220):1−42, 2021 PDF BibTeX
-
A Bayes-Optimal View on Adversarial Examples
Eitan Richardson, Yair Weiss (221):1−28, 2021 codePDF BibTeX
-
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, Anant Sahai (222):1−69, 2021 PDF BibTeX
-
Stochastic Online Optimization using Kalman Recursion
Joseph de Vilmarest, Olivier Wintenberger (223):1−55, 2021 PDF BibTeX
-
Bayesian Distance Clustering
Leo L. Duan, David B. Dunson (224):1−27, 2021 codePDF BibTeX
-
Representer Theorems in Banach Spaces: Minimum Norm Interpolation, Regularized Learning and Semi-Discrete Inverse Problems
-
FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection
Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, Qiang Yang (226):1−6, 2021 codePDF BibTeX
-
Tighter Risk Certificates for Neural Networks
María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, Csaba Szepesvári (227):1−40, 2021 codePDF BibTeX
-
How Well Generative Adversarial Networks Learn Distributions
-
Convolutional Neural Networks Are Not Invariant to Translation, but They Can Learn to Be
Valerio Biscione, Jeffrey S. Bowers (229):1−28, 2021 PDF BibTeX
-
Learning with semi-definite programming: statistical bounds based on fixed point analysis and excess risk curvature
Stéphane Chrétien, Mihai Cucuringu, Guillaume Lecué, Lucie Neirac (230):1−64, 2021 PDF BibTeX
-
sklvq: Scikit Learning Vector Quantization
Rick van Veen, Michael Biehl, Gert-Jan de Vries (231):1−6, 2021 codePDF BibTeX
-
Probabilistic Iterative Methods for Linear Systems
Jon Cockayne, Ilse C.F. Ipsen, Chris J. Oates, Tim W. Reid (232):1−34, 2021 codePDF BibTeX
-
A Generalised Linear Model Framework for β-Variational Autoencoders based on Exponential Dispersion Families
Robert Sicks, Ralf Korn, Stefanie Schwaar (233):1−41, 2021 PDF BibTeX
-
A general linear-time inference method for Gaussian Processes on one dimension
Jackson Loper, David Blei, John P. Cunningham, Liam Paninski (234):1−36, 2021 PDF BibTeX
-
GIBBON: General-purpose Information-Based Bayesian Optimisation
Henry B. Moss, David S. Leslie, Javier Gonzalez, Paul Rayson (235):1−49, 2021 PDF BibTeX
-
Expanding Boundaries of Gap Safe Screening
Cassio F. Dantas, Emmanuel Soubies, Cédric Févotte (236):1−57, 2021 codePDF BibTeX
-
Consensus-Based Optimization on the Sphere: Convergence to Global Minimizers and Machine Learning
Massimo Fornasier, Lorenzo Pareschi, Hui Huang, Philippe Sünnen (237):1−55, 2021 codePDF BibTeX
-
DeEPCA: Decentralized Exact PCA with Linear Convergence Rate
-
Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo
Mert Gürbüzbalaban, Xuefeng Gao, Yuanhan Hu, Lingjiong Zhu (239):1−69, 2021 PDF BibTeX
-
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M Oztekin, Xuan Zhang, Shuiwang Ji (240):1−9, 2021 codePDF BibTeX
-
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, Alexandra Peste (241):1−124, 2021 codePDF BibTeX
-
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
Jesus Maria Sanz-Serna, Konstantinos C. Zygalakis (242):1−37, 2021 PDF BibTeX
-
Quasi-Monte Carlo Quasi-Newton in Variational Bayes
-
Consistency of Gaussian Process Regression in Metric Spaces
-
On lp-hyperparameter Learning via Bilevel Nonsmooth Optimization
Takayuki Okuno, Akiko Takeda, Akihiro Kawana, Motokazu Watanabe (245):1−47, 2021 PDF BibTeX
-
Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals
Emilie Kaufmann, Wouter M. Koolen (246):1−44, 2021 PDF BibTeX
-
Statistical Guarantees for Local Spectral Clustering on Random Neighborhood Graphs
Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani (247):1−71, 2021 PDF BibTeX
-
Statistically and Computationally Efficient Change Point Localization in Regression Settings
Daren Wang, Zifeng Zhao, Kevin Z. Lin, Rebecca Willett (248):1−46, 2021 PDF BibTeX
-
On the Riemannian Search for Eigenvector Computation
-
Bayesian time-aligned factor analysis of paired multivariate time series
Arkaprava Roy, Jana Schaich Borg, David B Dunson (250):1−27, 2021 PDF BibTeX
-
Tractable Approximate Gaussian Inference for Bayesian Neural Networks
James-A. Goulet, Luong Ha Nguyen, Saeid Amiri (251):1−23, 2021 codePDF BibTeX
-
Batch greedy maximization of non-submodular functions: Guarantees and applications to experimental design
Jayanth Jagalur-Mohan, Youssef Marzouk (252):1−62, 2021 PDF BibTeX
-
Bifurcation Spiking Neural Network
Shao-Qun Zhang, Zhao-Yu Zhang, Zhi-Hua Zhou (253):1−21, 2021 PDF BibTeX
-
Inference for the Case Probability in High-dimensional Logistic Regression
Zijian Guo, Prabrisha Rakshit, Daniel S. Herman, Jinbo Chen (254):1−54, 2021 PDF BibTeX
-
Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures
Alex Luedtke, Incheoul Chung, Oleg Sofrygin (255):1−67, 2021 codePDF BibTeX
-
Model Linkage Selection for Cooperative Learning
Jiaying Zhou, Jie Ding, Kean Ming Tan, Vahid Tarokh (256):1−44, 2021 PDF BibTeX
-
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou, Yitong Li, Yuan Wu, David Carlson (257):1−47, 2021 PDF BibTeX
-
Optimized Score Transformation for Consistent Fair Classification
Dennis Wei, Karthikeyan Natesan Ramamurthy, Flavio P. Calmon (258):1−78, 2021 PDF BibTeX
-
ROOTS: Object-Centric Representation and Rendering of 3D Scenes
Chang Chen, Fei Deng, Sungjin Ahn (259):1−36, 2021 PDF BibTeX
-
Learning Strategies in Decentralized Matching Markets under Uncertain Preferences
-
Domain adaptation under structural causal models
-
Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning
Chong Liu, Yuqing Zhu, Kamalika Chaudhuri, Yu-Xiang Wang (262):1−44, 2021 PDF BibTeX
-
On the Stability Properties and the Optimization Landscape of Training Problems with Squared Loss for Neural Networks and General Nonlinear Conic Approximation Schemes
-
Regularized spectral methods for clustering signed networks
Mihai Cucuringu, Apoorv Vikram Singh, Déborah Sulem, Hemant Tyagi (264):1−79, 2021 PDF BibTeX
-
Exact Asymptotics for Linear Quadratic Adaptive Control
Feicheng Wang, Lucas Janson (265):1−112, 2021 codePDF BibTeX
-
Learning Bayesian Networks from Ordinal Data
Xiang Ge Luo, Giusi Moffa, Jack Kuipers (266):1−44, 2021 codePDF BibTeX
-
Reproducing kernel Hilbert C*-module and kernel mean embeddings
Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, Yoshinobu Kawahara (267):1−56, 2021 PDF BibTeX
-
Stable-Baselines3: Reliable Reinforcement Learning Implementations
Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, Noah Dormann (268):1−8, 2021 codePDF BibTeX
-
CAT: Compression-Aware Training for bandwidth reduction
Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein, Avi Mendelson (269):1−20, 2021 codePDF BibTeX
-
Further results on latent discourse models and word embeddings
Sammy Khalife, Douglas Gonçalves, Youssef Allouah, Leo Liberti (270):1−36, 2021 PDF BibTeX
-
Nonparametric Continuous Sensor Registration
William Clark, Maani Ghaffari, Anthony Bloch (271):1−50, 2021 codePDF BibTeX
-
Transferability of Spectral Graph Convolutional Neural Networks
Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, Gitta Kutyniok (272):1−59, 2021 PDF BibTeX
-
On the Hardness of Robust Classification
Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, James Worrell (273):1−29, 2021 PDF BibTeX
-
Simultaneous Change Point Inference and Structure Recovery for High Dimensional Gaussian Graphical Models
Bin Liu, Xinsheng Zhang, Yufeng Liu (274):1−62, 2021 PDF BibTeX
-
Partial Policy Iteration for L1-Robust Markov Decision Processes
Chin Pang Ho, Marek Petrik, Wolfram Wiesemann (275):1−46, 2021 codePDF BibTeX
-
Estimating the Lasso's Effective Noise
Johannes Lederer, Michael Vogt (276):1−32, 2021 supplementaryPDF BibTeX
-
Gaussian Approximation for Bias Reduction in Q-Learning
Carlo D'Eramo, Andrea Cini, Alessandro Nuara, Matteo Pirotta, Cesare Alippi, Jan Peters, Marcello Restelli (277):1−51, 2021 PDF BibTeX
-
Multilevel Monte Carlo Variational Inference
-
Fast Learning for Renewal Optimization in Online Task Scheduling
-
Graph Matching with Partially-Correct Seeds
Liren Yu, Jiaming Xu, Xiaojun Lin (280):1−54, 2021 codePDF BibTeX
-
Contrastive Estimation Reveals Topic Posterior Information to Linear Models
Christopher Tosh, Akshay Krishnamurthy, Daniel Hsu (281):1−31, 2021 PDF BibTeX
-
LDLE: Low Distortion Local Eigenmaps
Dhruv Kohli, Alexander Cloninger, Gal Mishne (282):1−64, 2021 codePDF BibTeX
-
Non-linear, Sparse Dimensionality Reduction via Path Lasso Penalized Autoencoders
Oskar Allerbo, Rebecka Jörnsten (283):1−28, 2021 codePDF BibTeX
-
Linear Bandits on Uniformly Convex Sets
Thomas Kerdreux, Christophe Roux, Alexandre d'Aspremont, Sebastian Pokutta (284):1−23, 2021 PDF BibTeX
-
Double Generative Adversarial Networks for Conditional Independence Testing
Chengchun Shi, Tianlin Xu, Wicher Bergsma, Lexin Li (285):1−32, 2021 PDF BibTeX
-
An Online Sequential Test for Qualitative Treatment Effects
Chengchun Shi, Shikai Luo, Hongtu Zhu, Rui Song (286):1−51, 2021 PDF BibTeX
-
V-statistics and Variance Estimation
Zhengze Zhou, Lucas Mentch, Giles Hooker (287):1−48, 2021 codePDF BibTeX
-
A Theory of the Risk for Optimization with Relaxation and its Application to Support Vector Machines
-
VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning
Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin Gal, Katja Hofmann, Shimon Whiteson (289):1−39, 2021 codePDF BibTeX
-
On Universal Approximation and Error Bounds for Fourier Neural Operators
Nikola Kovachki, Samuel Lanthaler, Siddhartha Mishra (290):1−76, 2021 PDF BibTeX