Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed

JMLR Volume 20

Adaptation Based on Generalized Discrepancy
Corinna Cortes, Mehryar Mohri, Andrés Muñoz Medina; (1):1−30, 2019.
[abs][pdf][bib]

Transport Analysis of Infinitely Deep Neural Network
Sho Sonoda, Noboru Murata; (2):1−52, 2019.
[abs][pdf][bib]

Parsimonious Online Learning with Kernels via Sparse Projections in Function Space
Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro; (3):1−44, 2019.
[abs][pdf][bib]

Convergence Rate of a Simulated Annealing Algorithm with Noisy Observations
Clément Bouttier, Ioana Gavra; (4):1−45, 2019.
[abs][pdf][bib]

Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression
Han Chen, Garvesh Raskutti, Ming Yuan; (5):1−37, 2019.
[abs][pdf][bib]

scikit-multilearn: A Python library for Multi-Label Classification
Piotr Szymański, Tomasz Kajdanowicz; (6):1−22, 2019.
[abs][pdf][bib]      [code]

Scalable Approximations for Generalized Linear Problems
Murat Erdogdu, Mohsen Bayati, Lee H. Dicker; (7):1−45, 2019.
[abs][pdf][bib]

Forward-Backward Selection with Early Dropping
Giorgos Borboudakis, Ioannis Tsamardinos; (8):1−39, 2019.
[abs][pdf][bib]

Dynamic Pricing in High-dimensions
Adel Javanmard, Hamid Nazerzadeh; (9):1−49, 2019.
[abs][pdf][bib]

Graphical Lasso and Thresholding: Equivalence and Closed-form Solutions
Salar Fattahi, Somayeh Sojoudi; (10):1−44, 2019.
[abs][pdf][bib]

An Approach to One-Bit Compressed Sensing Based on Probably Approximately Correct Learning Theory
Mehmet Eren Ahsen, Mathukumalli Vidyasagar; (11):1−23, 2019.
[abs][pdf][bib]

Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Shusen Wang, Alex Gittens, Michael W. Mahoney; (12):1−49, 2019.
[abs][pdf][bib]

Train and Test Tightness of LP Relaxations in Structured Prediction
Ofer Meshi, Ben London, Adrian Weller, David Sontag; (13):1−34, 2019.
[abs][pdf][bib]

Approximations of the Restless Bandit Problem
Steffen Grünewälder, Azadeh Khaleghi; (14):1−37, 2019.
[abs][pdf][bib]

Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell, Tamara Broderick; (15):1−38, 2019.
[abs][pdf][bib]

Smooth neighborhood recommender systems
Ben Dai, Junhui Wang, Xiaotong Shen, Annie Qu; (16):1−24, 2019.
[abs][pdf][bib]

Delay and Cooperation in Nonstochastic Bandits
Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour; (17):1−38, 2019.
[abs][pdf][bib]

Multiplicative local linear hazard estimation and best one-sided cross-validation
Maria Luz Gámiz, María Dolores Martínez-Miranda, Jens Perch Nielsen; (18):1−29, 2019.
[abs][pdf][bib]

spark-crowd: A Spark Package for Learning from Crowdsourced Big Data
Enrique G. Rodrigo, Juan A. Aledo, José A. Gámez; (19):1−5, 2019.
[abs][pdf][bib]      [code]

Accelerated Alternating Projections for Robust Principal Component Analysis
HanQin Cai, Jian-Feng Cai, Ke Wei; (20):1−33, 2019.
[abs][pdf][bib]

Spectrum Estimation from a Few Entries
Ashish Khetan, Sewoong Oh; (21):1−55, 2019.
[abs][pdf][bib]

Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics
Yanning Shen, Tianyi Chen, Georgios B. Giannakis; (22):1−36, 2019.
[abs][pdf][bib]

Determining the Number of Latent Factors in Statistical Multi-Relational Learning
Chengchun Shi, Wenbin Lu, Rui Song; (23):1−38, 2019.
[abs][pdf][bib]

Joint PLDA for Simultaneous Modeling of Two Factors
Luciana Ferrer, Mitchell McLaren; (24):1−29, 2019.
[abs][pdf][bib]

Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations
Alberto Bietti, Julien Mairal; (25):1−49, 2019.
[abs][pdf][bib]

TensorLy: Tensor Learning in Python
Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Maja Pantic; (26):1−6, 2019.
[abs][pdf][bib]      [code]

Monotone Learning with Rectified Wire Networks
Veit Elser, Dan Schmidt, Jonathan Yedidia; (27):1−42, 2019.
[abs][pdf][bib]

Pyro: Deep Universal Probabilistic Programming
Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, Noah D. Goodman; (28):1−6, 2019.
[abs][pdf][bib]      [code]

Iterated Learning in Dynamic Social Networks
Bernard Chazelle, Chu Wang; (29):1−28, 2019.
[abs][pdf][bib]

© JMLR .