Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 11

An Efficient Explanation of Individual Classifications using Game Theory
Erik Štrumbelj, Igor Kononenko; (1):1−18, 2010.
[abs][pdf][bib]

Online Learning for Matrix Factorization and Sparse Coding
Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro; (2):19−60, 2010.
[abs][pdf][bib]

Model Selection: Beyond the Bayesian/Frequentist Divide
Isabelle Guyon, Amir Saffari, Gideon Dror, Gavin Cawley; (3):61−87, 2010.
[abs][pdf][bib]

On-Line Sequential Bin Packing
András György, Gábor Lugosi, György Ottucsàk; (4):89−109, 2010.
[abs][pdf][bib]

Classification Methods with Reject Option Based on Convex Risk Minimization
Ming Yuan, Marten Wegkamp; (5):111−130, 2010.
[abs][pdf][bib]

An Investigation of Missing Data Methods for Classification Trees Applied to Binary Response Data
Yufeng Ding, Jeffrey S. Simonoff; (6):131−170, 2010.
[abs][pdf][bib]

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation
Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos; (7):171−234, 2010.
[abs][pdf][bib]

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions
Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos; (8):235−284, 2010.
[abs][pdf][bib]

Optimal Search on Clustered Structural Constraint for Learning Bayesian Network Structure
Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru Miyano; (9):285−310, 2010.
[abs][pdf][bib]

Bundle Methods for Regularized Risk Minimization
Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le; (10):311−365, 2010.
[abs][pdf][bib]

A Convergent Online Single Time Scale Actor Critic Algorithm
Dotan Di Castro, Ron Meir; (11):367−410, 2010.
[abs][pdf][bib]

Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting
Philippos Mordohai, Gérard Medioni; (12):411−450, 2010.
[abs][pdf][bib]

Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization
Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, Samuel Kaski; (13):451−490, 2010.
[abs][pdf][bib]

Classification Using Geometric Level Sets
Kush R. Varshney, Alan S. Willsky; (14):491−516, 2010.
[abs][pdf][bib]

Generalized Power Method for Sparse Principal Component Analysis
Michel Journée, Yurii Nesterov, Peter Richtárik, Rodolphe Sepulchre; (15):517−553, 2010.
[abs][pdf][bib]

Approximate Tree Kernels
Konrad Rieck, Tammo Krueger, Ulf Brefeld, Klaus-Robert Müller; (16):555−580, 2010.
[abs][pdf][bib]

On Finding Predictors for Arbitrary Families of Processes
Daniil Ryabko; (17):581−602, 2010.
[abs][pdf][bib]

A Rotation Test to Verify Latent Structure
Patrick O. Perry, Art B. Owen; (18):603−624, 2010.
[abs][pdf][bib]

Why Does Unsupervised Pre-training Help Deep Learning?
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio; (19):625−660, 2010.
[abs][pdf][bib]

Error-Correcting Output Codes Library
Sergio Escalera, Oriol Pujol, Petia Radeva; (20):661−664, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Second-Order Bilinear Discriminant Analysis
Christoforos Christoforou, Robert Haralick, Paul Sajda, Lucas C. Parra; (21):665−685, 2010.
[abs][pdf][bib]

On the Rate of Convergence of the Bagged Nearest Neighbor Estimate
Gérard Biau, Frédéric Cérou, Arnaud Guyader; (22):687−712, 2010.
[abs][pdf][bib]

A Fast Hybrid Algorithm for Large-Scale l1-Regularized Logistic Regression
Jianing Shi, Wotao Yin, Stanley Osher, Paul Sajda; (23):713−741, 2010.
[abs][pdf][bib]

PyBrain
Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen Schmidhuber; (24):743−746, 2010.
[abs][pdf][bib]

Maximum Relative Margin and Data-Dependent Regularization
Pannagadatta K. Shivaswamy, Tony Jebara; (25):747−788, 2010.
[abs][pdf][bib]

Stability Bounds for Stationary φ-mixing and β-mixing Processes
Mehryar Mohri, Afshin Rostamizadeh; (26):789−814, 2010.
[abs][pdf][bib]

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models
Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin; (27):815−848, 2010.
[abs][pdf][bib]

A Streaming Parallel Decision Tree Algorithm
Yael Ben-Haim, Elad Tom-Tov; (28):849−872, 2010.
[abs][pdf][bib]

Image Denoising with Kernels Based on Natural Image Relations
Valero Laparra, Juan Gutiérrez, Gustavo Camps-Valls, Jesús Malo; (29):873−903, 2010.
[abs][pdf][bib]

On Learning with Integral Operators
Lorenzo Rosasco, Mikhail Belkin, Ernesto De Vito; (30):905−934, 2010.
[abs][pdf][bib]

On Spectral Learning
Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil; (31):935−953, 2010.
[abs][pdf][bib]

Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data
Gideon S. Mann, Andrew McCallum; (32):955−984, 2010.
[abs][pdf][bib]

Kronecker Graphs: An Approach to Modeling Networks
Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, Zoubin Ghahramani; (33):985−1042, 2010.
[abs][pdf][bib]

Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes
Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright; (34):1043−1080, 2010.
[abs][pdf][bib]

Analysis of Multi-stage Convex Relaxation for Sparse Regularization
Tong Zhang; (35):1081−1107, 2010.
[abs][pdf][bib]

Large Scale Online Learning of Image Similarity Through Ranking
Gal Chechik, Varun Sharma, Uri Shalit, Samy Bengio; (36):1109−1135, 2010.
[abs][pdf][bib]

Continuous Time Bayesian Network Reasoning and Learning Engine
Christian R. Shelton, Yu Fan, William Lam, Joon Lee, Jing Xu; (37):1137−1140, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

SFO: A Toolbox for Submodular Function Optimization
Andreas Krause; (38):1141−1144, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning
Jin Yu, S.V.N. Vishwanathan, Simon Günter, Nicol N. Schraudolph; (39):1145−1200, 2010.
[abs][pdf][bib]

Graph Kernels
S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt; (40):1201−1242, 2010.
[abs][pdf][bib]

Stochastic Complexity and Generalization Error of a Restricted Boltzmann Machine in Bayesian Estimation
Miki Aoyagi; (41):1243−1272, 2010.
[abs][pdf][bib]

Approximate Inference on Planar Graphs using Loop Calculus and Belief Propagation
Vicenç Gómez, Hilbert J. Kappen, Michael Chertkov; (42):1273−1296, 2010.
[abs][pdf][bib]

Learning From Crowds
Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, Linda Moy; (43):1297−1322, 2010.
[abs][pdf][bib]

Unsupervised Supervised Learning I: Estimating Classification and Regression Errors without Labels
Pinar Donmez, Guy Lebanon, Krishnakumar Balasubramanian; (44):1323−1351, 2010.
[abs][pdf][bib]

Learning Translation Invariant Kernels for Classification
Kamaledin Ghiasi-Shirazi, Reza Safabakhsh, Mostafa Shamsi; (45):1353−1390, 2010.
[abs][pdf][bib]

Consistent Nonparametric Tests of Independence
Arthur Gretton, László Györfi; (46):1391−1423, 2010.
[abs][pdf][bib]

Characterization, Stability and Convergence of Hierarchical Clustering Methods
Gunnar Carlsson, Facundo Mémoli; (47):1425−1470, 2010.
[abs][pdf][bib]

Training and Testing Low-degree Polynomial Data Mappings via Linear SVM
Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin; (48):1471−1490, 2010.
[abs][pdf][bib]

Quadratic Programming Feature Selection
Irene Rodriguez-Lujan, Ramon Huerta, Charles Elkan, Carlos Santa Cruz; (49):1491−1516, 2010.
[abs][pdf][bib]

Hilbert Space Embeddings and Metrics on Probability Measures
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R.G. Lanckriet; (50):1517−1561, 2010.
[abs][pdf][bib]

Near-optimal Regret Bounds for Reinforcement Learning
Thomas Jaksch, Ronald Ortner, Peter Auer; (51):1563−1600, 2010.
[abs][pdf][bib]

MOA: Massive Online Analysis
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer; (52):1601−1604, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

On the Foundations of Noise-free Selective Classification
Ran El-Yaniv, Yair Wiener; (53):1605−1641, 2010.
[abs][pdf][bib]

Introduction to Causal Inference
Peter Spirtes; (54):1643−1662, 2010.
[abs][pdf][bib]

Consensus-Based Distributed Support Vector Machines
Pedro A. Forero, Alfonso Cano, Georgios B. Giannakis; (55):1663−1707, 2010.
[abs][pdf][bib]

Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity
Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer; (56):1709−1731, 2010.
[abs][pdf][bib]

FastInf: An Efficient Approximate Inference Library
Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan; (57):1733−1736, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Evolving Static Representations for Task Transfer
Phillip Verbancsics, Kenneth O. Stanley; (58):1737−1769, 2010.
[abs][pdf][bib]

Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing
Ryo Yoshida, Mike West; (59):1771−1798, 2010.
[abs][pdf][bib]

The SHOGUN Machine Learning Toolbox
Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, Vojt{{\ve}}ch Franc; (60):1799−1802, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

How to Explain Individual Classification Decisions
David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, Klaus-Robert Müller; (61):1803−1831, 2010.
[abs][pdf][bib]

Permutation Tests for Studying Classifier Performance
Markus Ojala, Gemma C. Garriga; (62):1833−1863, 2010.
[abs][pdf][bib]

Sparse Spectrum Gaussian Process Regression
Miguel Lázaro-Gredilla, Joaquin Quiñnero-Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal; (63):1865−1881, 2010.
[abs][pdf][bib]

Fast and Scalable Local Kernel Machines
Nicola Segata, Enrico Blanzieri; (64):1883−1926, 2010.
[abs][pdf][bib]

Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes
Liva Ralaivola, Marie Szafranski, Guillaume Stempfel; (65):1927−1956, 2010.
[abs][pdf][bib]

Practical Approaches to Principal Component Analysis in the Presence of Missing Values
Alexander Ilin, Tapani Raiko; (66):1957−2000, 2010.
[abs][pdf][bib]

Posterior Regularization for Structured Latent Variable Models
Kuzman Ganchev, João Graça, Jennifer Gillenwater, Ben Taskar; (67):2001−2049, 2010.
[abs][pdf][bib]

A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, Karel Crombecq; (68):2051−2055, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Matrix Completion from Noisy Entries
Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh; (69):2057−2078, 2010.
[abs][pdf][bib]

On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
Gavin C. Cawley, Nicola L. C. Talbot; (70):2079−2107, 2010.
[abs][pdf][bib]

Model-based Boosting 2.0
Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner; (71):2109−2113, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Importance Sampling for Continuous Time Bayesian Networks
Yu Fan, Jing Xu, Christian R. Shelton; (72):2115−2140, 2010.
[abs][pdf][bib]

Matched Gene Selection and Committee Classifier for Molecular Classification of Heterogeneous Diseases
Guoqiang Yu, Yuanjian Feng, David J. Miller, Jianhua Xuan, Eric P. Hoffman, Robert Clarke, Ben Davidson, Ie-Ming Shih, Yue Wang; (73):2141−2167, 2010.
[abs][pdf][bib]

libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models
Joris M. Mooij; (74):2169−2173, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Learning Gradients: Predictive Models that Infer Geometry and Statistical Dependence
Qiang Wu, Justin Guinney, Mauro Maggioni, Sayan Mukherjee; (75):2175−2198, 2010.
[abs][pdf][bib]

Regularized Discriminant Analysis, Ridge Regression and Beyond
Zhihua Zhang, Guang Dai, Congfu Xu, Michael I. Jordan; (76):2199−2228, 2010.
[abs][pdf][bib]

Erratum: SGDQN is Less Careful than Expected
Antoine Bordes, Léon Bottou, Patrick Gallinari, Jonathan Chang, S. Alex Smith; (77):2229−2240, 2010.
[abs][pdf][bib]

Restricted Eigenvalue Properties for Correlated Gaussian Designs
Garvesh Raskutti, Martin J. Wainwright, Bin Yu; (78):2241−2259, 2010.
[abs][pdf][bib]

High Dimensional Inverse Covariance Matrix Estimation via Linear Programming
Ming Yuan; (79):2261−2286, 2010.
[abs][pdf][bib]

Spectral Regularization Algorithms for Learning Large Incomplete Matrices
Rahul Mazumder, Trevor Hastie, Robert Tibshirani; (80):2287−2322, 2010.
[abs][pdf][bib]

Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
Franz Pernkopf, Jeff A. Bilmes; (81):2323−2360, 2010.
[abs][pdf][bib]

High-dimensional Variable Selection with Sparse Random Projections: Measurement Sparsity and Statistical Efficiency
Dapo Omidiran, Martin J. Wainwright; (82):2361−2386, 2010.
[abs][pdf][bib]

Composite Binary Losses
Mark D. Reid, Robert C. Williamson; (83):2387−2422, 2010.
[abs][pdf][bib]

Sparse Semi-supervised Learning Using Conjugate Functions
Shiliang Sun, John Shawe-Taylor; (84):2423−2455, 2010.
[abs][pdf][bib]

Rademacher Complexities and Bounding the Excess Risk in Active Learning
Vladimir Koltchinskii; (85):2457−2485, 2010.
[abs][pdf][bib]

Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data
Miloš Radovanović, Alexandros Nanopoulos, Mirjana Ivanović; (86):2487−2531, 2010.
[abs][pdf][bib]

WEKA−Experiences with a Java Open-Source Project
Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten; (87):2533−2541, 2010.
[abs][pdf][bib]

Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization
Lin Xiao; (88):2543−2596, 2010.
[abs][pdf][bib]

Stochastic Composite Likelihood
Joshua V. Dillon, Guy Lebanon; (89):2597−2633, 2010.
[abs][pdf][bib]

Learnability, Stability and Uniform Convergence
Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, Karthik Sridharan; (90):2635−2670, 2010.
[abs][pdf][bib]

Topology Selection in Graphical Models of Autoregressive Processes
Jitkomut Songsiri, Lieven Vandenberghe; (91):2671−2705, 2010.
[abs][pdf][bib]

Using Contextual Representations to Efficiently Learn Context-Free Languages
Alexander Clark, Rémi Eyraud, Amaury Habrard; (92):2707−2744, 2010.
[abs][pdf][bib]

Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman; (93):2745−2783, 2010.
[abs][pdf][bib]

Regret Bounds and Minimax Policies under Partial Monitoring
Jean-Yves Audibert, Sébastien Bubeck; (94):2785−2836, 2010.
[abs][pdf][bib]

Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
Nguyen Xuan Vinh, Julien Epps, James Bailey; (95):2837−2854, 2010.
[abs][pdf][bib]

Expectation Truncation and the Benefits of Preselection In Training Generative Models
Jörg Lücke, Julian Eggert; (96):2855−2900, 2010.
[abs][pdf][bib]

Linear Algorithms for Online Multitask Classification
Giovanni Cavallanti, Nicoló Cesa-Bianchi, Claudio Gentile; (97):2901−2934, 2010.
[abs][pdf][bib]

Tree Decomposition for Large-Scale SVM Problems
Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu; (98):2935−2972, 2010.
[abs][pdf][bib]

Semi-Supervised Novelty Detection
Gilles Blanchard, Gyemin Lee, Clayton Scott; (99):2973−3009, 2010.
[abs][pdf][bib]

Gaussian Processes for Machine Learning (GPML) Toolbox
Carl Edward Rasmussen, Hannes Nickisch; (100):3011−3015, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Covariance in Unsupervised Learning of Probabilistic Grammars
Shay B. Cohen, Noah A. Smith; (101):3017−3051, 2010.
[abs][pdf][bib]

Inducing Tree-Substitution Grammars
Trevor Cohn, Phil Blunsom, Sharon Goldwater; (102):3053−3096, 2010.
[abs][pdf][bib]

Collective Inference for Extraction MRFs Coupled with Symmetric Clique Potentials
Rahul Gupta, Sunita Sarawagi, Ajit A. Diwan; (103):3097−3135, 2010.
[abs][pdf][bib]

A Generalized Path Integral Control Approach to Reinforcement Learning
Evangelos Theodorou, Jonas Buchli, Stefan Schaal; (104):3137−3181, 2010.
[abs][pdf][bib]

A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification
Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin; (105):3183−3234, 2010.
[abs][pdf][bib]

Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, Juha Karhunen; (106):3235−3268, 2010.
[abs][pdf][bib]

Classification with Incomplete Data Using Dirichlet Process Priors
Chunping Wang, Xuejun Liao, Lawrence Carin, David B. Dunson; (107):3269−3311, 2010.
[abs][pdf][bib]

Maximum Likelihood in Cost-Sensitive Learning: Model Specification, Approximations, and Upper Bounds
Jacek P. Dmochowski, Paul Sajda, Lucas C. Parra; (108):3313−3332, 2010.
[abs][pdf][bib]

Learning Instance-Specific Predictive Models
Shyam Visweswaran, Gregory F. Cooper; (109):3333−3369, 2010.
[abs][pdf][bib]

Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol; (110):3371−3408, 2010.
[abs][pdf][bib]

Lp-Nested Symmetric Distributions
Fabian Sinz, Matthias Bethge; (111):3409−3451, 2010.
[abs][pdf][bib]

Efficient Algorithms for Conditional Independence Inference
Remco Bouckaert, Raymond Hemmecke, Silvia Lindner, Milan Studený; (112):3453−3479, 2010.
[abs][pdf][bib]

An Exponential Model for Infinite Rankings
Marina Meilă, Le Bao; (113):3481−3518, 2010.
[abs][pdf][bib]

Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls
Fei Ye, Cun-Hui Zhang; (114):3519−3540, 2010.
[abs][pdf][bib]

Incremental Sigmoid Belief Networks for Grammar Learning
James Henderson, Ivan Titov; (115):3541−3570, 2010.
[abs][pdf][bib]

Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
Sumio Watanabe; (116):3571−3594, 2010.
[abs][pdf][bib]

PAC-Bayesian Analysis of Co-clustering and Beyond
Yevgeny Seldin, Naftali Tishby; (117):3595−3646, 2010.
[abs][pdf][bib]

Learning Non-Stationary Dynamic Bayesian Networks
Joshua W. Robinson, Alexander J. Hartemink; (118):3647−3680, 2010.
[abs][pdf][bib]

© JMLR .
Mastodon