JMLR Volume 20
-
Adaptation Based on Generalized Discrepancy
Corinna Cortes, Mehryar Mohri, Andrés Muñoz Medina (1):1−30, 2019 PDF BibTeX
-
Transport Analysis of Infinitely Deep Neural Network
-
Parsimonious Online Learning with Kernels via Sparse Projections in Function Space
Alec Koppel, Garrett Warnell, Ethan Stump, Alejandro Ribeiro (3):1−44, 2019 PDF BibTeX
-
Convergence Rate of a Simulated Annealing Algorithm with Noisy Observations
-
Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression
Han Chen, Garvesh Raskutti, Ming Yuan (5):1−37, 2019 PDF BibTeX
-
scikit-multilearn: A Python library for Multi-Label Classification
Piotr Szymański, Tomasz Kajdanowicz (6):1−22, 2019 codePDF BibTeX
-
Scalable Approximations for Generalized Linear Problems
Murat Erdogdu, Mohsen Bayati, Lee H. Dicker (7):1−45, 2019 PDF BibTeX
-
Forward-Backward Selection with Early Dropping
Giorgos Borboudakis, Ioannis Tsamardinos (8):1−39, 2019 PDF BibTeX
-
Dynamic Pricing in High-dimensions
-
Graphical Lasso and Thresholding: Equivalence and Closed-form Solutions
-
An Approach to One-Bit Compressed Sensing Based on Probably Approximately Correct Learning Theory
Mehmet Eren Ahsen, Mathukumalli Vidyasagar (11):1−23, 2019 PDF BibTeX
-
Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Shusen Wang, Alex Gittens, Michael W. Mahoney (12):1−49, 2019 PDF BibTeX
-
Train and Test Tightness of LP Relaxations in Structured Prediction
Ofer Meshi, Ben London, Adrian Weller, David Sontag (13):1−34, 2019 PDF BibTeX
-
Approximations of the Restless Bandit Problem
Steffen Grünewälder, Azadeh Khaleghi (14):1−37, 2019 PDF BibTeX
-
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell, Tamara Broderick (15):1−38, 2019 PDF BibTeX
-
Smooth neighborhood recommender systems
Ben Dai, Junhui Wang, Xiaotong Shen, Annie Qu (16):1−24, 2019 PDF BibTeX
-
Delay and Cooperation in Nonstochastic Bandits
Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour (17):1−38, 2019 PDF BibTeX
-
Multiplicative local linear hazard estimation and best one-sided cross-validation
Maria Luz Gámiz, María Dolores Martínez-Miranda, Jens Perch Nielsen (18):1−29, 2019 PDF BibTeX
-
spark-crowd: A Spark Package for Learning from Crowdsourced Big Data
Enrique G. Rodrigo, Juan A. Aledo, José A. Gámez (19):1−5, 2019 codePDF BibTeX
-
Accelerated Alternating Projections for Robust Principal Component Analysis
HanQin Cai, Jian-Feng Cai, Ke Wei (20):1−33, 2019 PDF BibTeX
-
Spectrum Estimation from a Few Entries
-
Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics
Yanning Shen, Tianyi Chen, Georgios B. Giannakis (22):1−36, 2019 PDF BibTeX
-
Determining the Number of Latent Factors in Statistical Multi-Relational Learning
Chengchun Shi, Wenbin Lu, Rui Song (23):1−38, 2019 PDF BibTeX
-
Joint PLDA for Simultaneous Modeling of Two Factors
-
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations
-
TensorLy: Tensor Learning in Python
Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Maja Pantic (26):1−6, 2019 codePDF BibTeX
-
Monotone Learning with Rectified Wire Networks
Veit Elser, Dan Schmidt, Jonathan Yedidia (27):1−42, 2019 PDF BibTeX
-
Pyro: Deep Universal Probabilistic Programming
Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, Noah D. Goodman (28):1−6, 2019 codePDF BibTeX
-
Iterated Learning in Dynamic Social Networks
-
Exact Clustering of Weighted Graphs via Semidefinite Programming
-
Kernels for Sequentially Ordered Data
Franz J. Kiraly, Harald Oberhauser (31):1−45, 2019 PDF BibTeX
-
NetSDM: Semantic Data Mining with Network Analysis
Jan Kralj, Marko Robnik-Sikonja, Nada Lavrac (32):1−50, 2019 PDF BibTeX
-
The Relationship Between Agnostic Selective Classification, Active Learning and the Disagreement Coefficient
-
Matched Bipartite Block Model with Covariates
Zahra S. Razaee, Arash A. Amini, Jingyi Jessica Li (34):1−44, 2019 PDF BibTeX
-
Optimal Policies for Observing Time Series and Related Restless Bandit Problems
Christopher R. Dance, Tomi Silander (35):1−93, 2019 PDF BibTeX
-
A New Approach to Laplacian Solvers and Flow Problems
Patrick Rebeschini, Sekhar Tatikonda (36):1−37, 2019 PDF BibTeX
-
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
Tyler Maunu, Teng Zhang, Gilad Lerman (37):1−59, 2019 PDF BibTeX
-
Approximation Hardness for A Class of Sparse Optimization Problems
Yichen Chen, Yinyu Ye, Mengdi Wang (38):1−27, 2019 PDF BibTeX
-
A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
Miles E. Lopes, Shusen Wang, Michael W. Mahoney (39):1−40, 2019 PDF BibTeX
-
Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations
-
Decontamination of Mutual Contamination Models
Julian Katz-Samuels, Gilles Blanchard, Clayton Scott (41):1−57, 2019 PDF BibTeX
-
Utilizing Second Order Information in Minibatch Stochastic Variance Reduced Proximal Iterations
-
DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
Lin Xiao, Adams Wei Yu, Qihang Lin, Weizhu Chen (43):1−58, 2019 PDF BibTeX
-
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python
Jason Ge, Xingguo Li, Haoming Jiang, Han Liu, Tong Zhang, Mengdi Wang, Tuo Zhao (44):1−5, 2019 codewebpagePDF BibTeX
-
Robust Frequent Directions with Application in Online Learning
Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, Tong Zhang (45):1−41, 2019 PDF BibTeX
-
Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping
Shao-Bo Lin, Yunwen Lei, Ding-Xuan Zhou (46):1−36, 2019 PDF BibTeX
-
Analysis of spectral clustering algorithms for community detection: the general bipartite setting
-
Efficient augmentation and relaxation learning for individualized treatment rules using observational data
Ying-Qi Zhao, Eric B. Laber, Yang Ning, Sumona Saha, Bruce E. Sands (48):1−23, 2019 PDF BibTeX
-
Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots
Akshara Rai, Rika Antonova, Franziska Meier, Christopher G. Atkeson (49):1−24, 2019 PDF BibTeX
-
No-Regret Bayesian Optimization with Unknown Hyperparameters
Felix Berkenkamp, Angela P. Schoellig, Andreas Krause (50):1−24, 2019 PDF BibTeX
-
Bayesian Combination of Probabilistic Classifiers using Multivariate Normal Mixtures
-
Thompson Sampling Guided Stochastic Searching on the Line for Deceptive Environments with Applications to Root-Finding Problems
Sondre Glimsdal, Ole-Christoffer Granmo (52):1−24, 2019 PDF BibTeX
-
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Philipp Probst, Anne-Laure Boulesteix, Bernd Bischl (53):1−32, 2019 PDF BibTeX
-
Deep Reinforcement Learning for Swarm Systems
Maximilian Hüttenrauch, Adrian Šošić, Gerhard Neumann (54):1−31, 2019 PDF BibTeX
-
Neural Architecture Search: A Survey
Thomas Elsken, Jan Hendrik Metzen, Frank Hutter (55):1−21, 2019 PDF BibTeX
-
Near Optimal Frequent Directions for Sketching Dense and Sparse Matrices
-
Multi-class Heterogeneous Domain Adaptation
Joey Tianyi Zhou, Ivor W. Tsang, Sinno Jialin Pan, Mingkui Tan (57):1−31, 2019 PDF BibTeX
-
The Common-directions Method for Regularized Empirical Risk Minimization
Po-Wei Wang, Ching-pei Lee, Chih-Jen Lin (58):1−49, 2019 PDF BibTeX
-
Kernel Approximation Methods for Speech Recognition
Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, Fei Sha (59):1−36, 2019 PDF BibTeX
-
Robust Estimation of Derivatives Using Locally Weighted Least Absolute Deviation Regression
WenWu Wang, Ping Yu, Lu Lin, Tiejun Tong (60):1−49, 2019 PDF BibTeX
-
The Sup-norm Perturbation of HOSVD and Low Rank Tensor Denoising
-
Multi-scale Online Learning: Theory and Applications to Online Auctions and Pricing
Sébastien Bubeck, Nikhil R. Devanur, Zhiyi Huang, Rad Niazadeh (62):1−37, 2019 PDF BibTeX
-
Nearly-tight VC-dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks
Peter L. Bartlett, Nick Harvey, Christopher Liaw, Abbas Mehrabian (63):1−17, 2019 PDF BibTeX
-
A Representer Theorem for Deep Kernel Learning
Bastian Bohn, Michael Griebel, Christian Rieger (64):1−32, 2019 PDF BibTeX
-
Active Learning for Cost-Sensitive Classification
Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, John Langford (65):1−50, 2019 PDF BibTeX
-
Proximal Distance Algorithms: Theory and Practice
Kevin L. Keys, Hua Zhou, Kenneth Lange (66):1−38, 2019 PDF BibTeX
-
Learnability of Solutions to Conjunctive Queries
-
Variance-based Regularization with Convex Objectives
-
On Consistent Vertex Nomination Schemes
Vince Lyzinski, Keith Levin, Carey E. Priebe (69):1−39, 2019 PDF BibTeX
-
Semi-Analytic Resampling in Lasso
Tomoyuki Obuchi, Yoshiyuki Kabashima (70):1−33, 2019 PDF BibTeX
-
Lazifying Conditional Gradient Algorithms
Gábor Braun, Sebastian Pokutta, Daniel Zink (71):1−42, 2019 PDF BibTeX
-
Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning
Can Karakus, Yifan Sun, Suhas Diggavi, Wotao Yin (72):1−47, 2019 PDF BibTeX
-
Analysis of Langevin Monte Carlo via Convex Optimization
Alain Durmus, Szymon Majewski, Błażej Miasojedow (73):1−46, 2019 PDF BibTeX
-
Deep Optimal Stopping
Sebastian Becker, Patrick Cheridito, Arnulf Jentzen (74):1−25, 2019 PDF BibTeX
-
Fairness Constraints: A Flexible Approach for Fair Classification
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi (75):1−42, 2019 PDF BibTeX
-
Generalized Score Matching for Non-Negative Data
Shiqing Yu, Mathias Drton, Ali Shojaie (76):1−70, 2019 PDF BibTeX
-
Nonuniformity of P-values Can Occur Early in Diverging Dimensions
Yingying Fan, Emre Demirkaya, Jinchi Lv (77):1−33, 2019 PDF BibTeX
-
Prediction Risk for the Horseshoe Regression
Anindya Bhadra, Jyotishka Datta, Yunfan Li, Nicholas G. Polson, Brandon Willard (78):1−39, 2019 PDF BibTeX
-
Quantification Under Prior Probability Shift: the Ratio Estimator and its Extensions
Afonso Fernandes Vaz, Rafael Izbicki, Rafael Bassi Stern (79):1−33, 2019 PDF BibTeX
-
Learning to Match via Inverse Optimal Transport
Ruilin Li, Xiaojing Ye, Haomin Zhou, Hongyuan Zha (80):1−37, 2019 PDF BibTeX
-
Tight Lower Bounds on the VC-dimension of Geometric Set Systems
Mónika Csikós, Nabil H. Mustafa, Andrey Kupavskii (81):1−8, 2019 PDF BibTeX
-
SMART: An Open Source Data Labeling Platform for Supervised Learning
Rob Chew, Michael Wenger, Caroline Kery, Jason Nance, Keith Richards, Emily Hadley, Peter Baumgartner (82):1−5, 2019 codePDF BibTeX
-
On the optimality of the Hedge algorithm in the stochastic regime
Jaouad Mourtada, Stéphane Gaïffas (83):1−28, 2019 PDF BibTeX
-
Differentiable Game Mechanics
Alistair Letcher, David Balduzzi, Sébastien Racanière, James Martens, Jakob Foerster, Karl Tuyls, Thore Graepel (84):1−40, 2019 PDF BibTeX
-
Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees
Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (85):1−35, 2019 PDF BibTeX
-
Streaming Principal Component Analysis From Incomplete Data
Armin Eftekhari, Gregory Ongie, Laura Balzano, Michael B. Wakin (86):1−62, 2019 PDF BibTeX
-
An asymptotic analysis of distributed nonparametric methods
-
Model Selection via the VC Dimension
-
Dependent relevance determination for smooth and structured sparse regression
Anqi Wu, Oluwasanmi Koyejo, Jonathan Pillow (89):1−43, 2019 PDF BibTeX
-
A Particle-Based Variational Approach to Bayesian Non-negative Matrix Factorization
Muhammad A Masood, Finale Doshi-Velez (90):1−56, 2019 PDF BibTeX
-
Best Arm Identification for Contaminated Bandits
Jason Altschuler, Victor-Emmanuel Brunel, Alan Malek (91):1−39, 2019 PDF BibTeX
-
AffectiveTweets: a Weka Package for Analyzing Affect in Tweets
Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, Saif M. Mohammad (92):1−6, 2019 codePDF BibTeX
-
iNNvestigate Neural Networks!
Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, Pieter-Jan Kindermans (93):1−8, 2019 codePDF BibTeX
-
Simultaneous Private Learning of Multiple Concepts
Mark Bun, Kobbi Nissim, Uri Stemmer (94):1−34, 2019 PDF BibTeX
-
High-Dimensional Poisson Structural Equation Model Learning via $\ell_1$-Regularized Regression
-
PyOD: A Python Toolbox for Scalable Outlier Detection
Yue Zhao, Zain Nasrullah, Zheng Li (96):1−7, 2019 codePDF BibTeX
-
Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion
Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou (97):1−22, 2019 PDF BibTeX
-
Adaptive Geometric Multiscale Approximations for Intrinsically Low-dimensional Data
-
Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction
William Herlands, Daniel B. Neill, Hannes Nickisch, Andrew Gordon Wilson (99):1−51, 2019 PDF BibTeX
-
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang, Matias Quiroz, Robert Kohn, Minh-Ngoc Tran, Mattias Villani (100):1−31, 2019 PDF BibTeX
-
Low Permutation-rank Matrices: Structural Properties and Noisy Completion
Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright (101):1−43, 2019 PDF BibTeX
-
Non-Convex Matrix Completion and Related Problems via Strong Duality
Maria-Florina Balcan, Yingyu Liang, Zhao Song, David P. Woodruff, Hongyang Zhang (102):1−56, 2019 PDF BibTeX
-
Regularization via Mass Transportation
Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, Peyman Mohajerin Esfahani (103):1−68, 2019 PDF BibTeX
-
Complete Search for Feature Selection in Decision Trees
-
Optimal Transport: Fast Probabilistic Approximation with Exact Solvers
Max Sommerfeld, Jörn Schrieber, Yoav Zemel, Axel Munk (105):1−23, 2019 PDF BibTeX
-
Solving the OSCAR and SLOPE Models Using a Semismooth Newton-Based Augmented Lagrangian Method
Ziyan Luo, Defeng Sun, Kim-Chuan Toh, Naihua Xiu (106):1−25, 2019 PDF BibTeX
-
Scalable Interpretable Multi-Response Regression via SEED
Zemin Zheng, M. Taha Bahadori, Yan Liu, Jinchi Lv (107):1−34, 2019 PDF BibTeX
-
Maximum Likelihood for Gaussian Process Classification and Generalized Linear Mixed Models under Case-Control Sampling
Omer Weissbrod, Shachar Kaufman, David Golan, Saharon Rosset (108):1−30, 2019 PDF BibTeX
-
Learning Unfaithful $K$-separable Gaussian Graphical Models
-
A Representer Theorem for Deep Neural Networks
-
An Efficient Two Step Algorithm for High Dimensional Change Point Regression Models Without Grid Search
Abhishek Kaul, Venkata K. Jandhyala, Stergios B. Fotopoulos (111):1−40, 2019 PDF BibTeX
-
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, George E. Dahl (112):1−49, 2019 PDF BibTeX
-
Distributed Inference for Linear Support Vector Machine
Xiaozhou Wang, Zhuoyi Yang, Xi Chen, Weidong Liu (113):1−41, 2019 PDF BibTeX
-
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery
Richard Y. Zhang, Somayeh Sojoudi, Javad Lavaei (114):1−34, 2019 PDF BibTeX
-
Learning Attribute Patterns in High-Dimensional Structured Latent Attribute Models
-
Graph Reduction with Spectral and Cut Guarantees
-
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla, Karl Krauth, Amir Dezfouli (117):1−63, 2019 PDF BibTeX
-
Binarsity: a penalization for one-hot encoded features in linear supervised learning
Mokhtar Z. Alaya, Simon Bussy, Stéphane Gaïffas, Agathe Guilloux (118):1−34, 2019 PDF BibTeX
-
Layer-Wise Learning Strategy for Nonparametric Tensor Product Smoothing Spline Regression and Graphical Models
Kean Ming Tan, Junwei Lu, Tong Zhang, Han Liu (119):1−38, 2019 PDF BibTeX
-
Ivanov-Regularised Least-Squares Estimators over Large RKHSs and Their Interpolation Spaces
Stephen Page, Steffen Grünewälder (120):1−49, 2019 PDF BibTeX
-
Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Bin Hong, Weizhong Zhang, Wei Liu, Jieping Ye, Deng Cai, Xiaofei He, Jie Wang (121):1−39, 2019 PDF BibTeX
-
Approximate Profile Maximum Likelihood
Dmitri S. Pavlichin, Jiantao Jiao, Tsachy Weissman (122):1−55, 2019 PDF BibTeX
-
ADMMBO: Bayesian Optimization with Unknown Constraints using ADMM
Setareh Ariafar, Jaume Coll-Font, Dana Brooks, Jennifer Dy (123):1−26, 2019 codePDF BibTeX
-
Deep Exploration via Randomized Value Functions
Ian Osband, Benjamin Van Roy, Daniel J. Russo, Zheng Wen (124):1−62, 2019 PDF BibTeX
-
ORCA: A Matlab/Octave Toolbox for Ordinal Regression
Javier Sánchez-Monedero, Pedro A. Gutiérrez, María Pérez-Ortiz (125):1−5, 2019 codePDF BibTeX
-
Learning Representations of Persistence Barcodes
Christoph D. Hofer, Roland Kwitt, Marc Niethammer (126):1−45, 2019 PDF BibTeX
-
Causal Learning via Manifold Regularization
Steven M. Hill, Chris J. Oates, Duncan A. Blythe, Sach Mukherjee (127):1−32, 2019 PDF BibTeX
-
Unsupervised Basis Function Adaptation for Reinforcement Learning
-
Time-to-Event Prediction with Neural Networks and Cox Regression
Håvard Kvamme, Ørnulf Borgan, Ida Scheel (129):1−30, 2019 PDF BibTeX
-
Logical Explanations for Deep Relational Machines Using Relevance Information
Ashwin Srinivasan, Lovekesh Vig, Michael Bain (130):1−47, 2019 PDF BibTeX
-
Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model
-
More Efficient Estimation for Logistic Regression with Optimal Subsamples
-
Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes
Luca Venturi, Afonso S. Bandeira, Joan Bruna (133):1−34, 2019 PDF BibTeX
-
Stochastic Variance-Reduced Cubic Regularization Methods
Dongruo Zhou, Pan Xu, Quanquan Gu (134):1−47, 2019 PDF BibTeX
-
Gaussian Processes with Linear Operator Inequality Constraints
-
Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis
Nicolás García Trillos, Daniel Sanz-Alonso, Ruiyi Yang (136):1−37, 2019 PDF BibTeX
-
Multiclass Boosting: Margins, Codewords, Losses, and Algorithms
Mohammad Saberian, Nuno Vasconcelos (137):1−68, 2019 PDF BibTeX
-
Generalized Maximum Entropy Estimation
Tobias Sutter, David Sutter, Peyman Mohajerin Esfahani, John Lygeros (138):1−29, 2019 PDF BibTeX
-
Decentralized Dictionary Learning Over Time-Varying Digraphs
Amir Daneshmand, Ying Sun, Gesualdo Scutari, Francisco Facchinei, Brian M. Sadler (139):1−62, 2019 PDF BibTeX
-
Nonparametric Bayesian Aggregation for Massive Data
Zuofeng Shang, Botao Hao, Guang Cheng (140):1−81, 2019 PDF BibTeX
-
Provably Accurate Double-Sparse Coding
Thanh V. Nguyen, Raymond K. W. Wong, Chinmay Hegde (141):1−43, 2019 PDF BibTeX
-
Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA
-
Minimal Sample Subspace Learning: Theory and Algorithms
-
Convergence of Gaussian Belief Propagation Under General Pairwise Factorization: Connecting Gaussian MRF with Pairwise Linear Gaussian Model
-
Bayesian Optimization for Policy Search via Online-Offline Experimentation
Benjamin Letham, Eytan Bakshy (145):1−30, 2019 appendixPDF BibTeX
-
Characterizing the Sample Complexity of Pure Private Learners
Amos Beimel, Kobbi Nissim, Uri Stemmer (146):1−33, 2019 PDF BibTeX
-
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
Niklas Pfister, Sebastian Weichwald, Peter Bühlmann, Bernhard Schölkopf (147):1−50, 2019 codePDF BibTeX
-
Collective Matrix Completion
-
On Asymptotic and Finite-Time Optimality of Bayesian Predictors
-
Learning Optimized Risk Scores
-
Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams
Vasileios Maroulas, Joshua L Mike, Christopher Oballe (151):1−49, 2019 PDF BibTeX
-
High-dimensional Varying Index Coefficient Models via Stein's Identity
Sen Na, Zhuoran Yang, Zhaoran Wang, Mladen Kolar (152):1−44, 2019 PDF BibTeX
-
Approximation Algorithms for Stochastic Clustering
David G. Harris, Shi Li, Thomas Pensyl, Aravind Srinivasan, Khoa Trinh (153):1−33, 2019 PDF BibTeX
-
Convergence Guarantees for a Class of Non-convex and Non-smooth Optimization Problems
Koulik Khamaru, Martin J. Wainwright (154):1−52, 2019 PDF BibTeX
-
Quantifying Uncertainty in Online Regression Forests
Theodore Vasiloudis, Gianmarco De Francisci Morales, Henrik Boström (155):1−35, 2019 PDF BibTeX
-
SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition
Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi Jiang, Naiyan Wang, Zhaoxiang Zhang (156):1−8, 2019 codePDF BibTeX
-
Simultaneous Phase Retrieval and Blind Deconvolution via Convex Programming
Ali Ahmed, Alireza Aghasi, Paul Hand (157):1−28, 2019 PDF BibTeX
-
GraSPy: Graph Statistics in Python
Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm, Joshua T. Vogelstein (158):1−7, 2019 codePDF BibTeX
-
Optimal Convergence Rates for Convex Distributed Optimization in Networks
Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié (159):1−31, 2019 PDF BibTeX
-
Learning by Unsupervised Nonlinear Diffusion
-
Sparse Kernel Regression with Coefficient-based $\ell_q-$regularization
Lei Shi, Xiaolin Huang, Yunlong Feng, Johan A.K. Suykens (161):1−44, 2019 PDF BibTeX
-
A Kernel Multiple Change-point Algorithm via Model Selection
Sylvain Arlot, Alain Celisse, Zaid Harchaoui (162):1−56, 2019 PDF BibTeX
-
Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets
Jie Wang, Zhanqiu Zhang, Jieping Ye (163):1−42, 2019 PDF BibTeX
-
The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks
-
On the Convergence of Gaussian Belief Propagation with Nodes of Arbitrary Size
Francois Kamper, Sarel J. Steel, Johan A. du Preez (165):1−37, 2019 PDF BibTeX
-
Unsupervised Evaluation and Weighted Aggregation of Ranked Classification Predictions
Mehmet Eren Ahsen, Robert M Vogel, Gustavo A Stolovitzky (166):1−40, 2019 PDF BibTeX
-
Stochastic Canonical Correlation Analysis
Chao Gao, Dan Garber, Nathan Srebro, Jialei Wang, Weiran Wang (167):1−46, 2019 PDF BibTeX
-
Determinantal Point Processes for Coresets
Nicolas Tremblay, Simon Barthelmé, Pierre-Olivier Amblard (168):1−70, 2019 PDF BibTeX
-
Embarrassingly Parallel Inference for Gaussian Processes
Michael Minyi Zhang, Sinead A. Williamson (169):1−26, 2019 PDF BibTeX
-
DBSCAN: Optimal Rates For Density-Based Cluster Estimation
Daren Wang, Xinyang Lu, Alessandro Rinaldo (170):1−50, 2019 PDF BibTeX
-
Shared Subspace Models for Multi-Group Covariance Estimation
-
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter, Heinrich Jiang, Maya Gupta, Serena Wang, Taman Narayan, Seungil You, Karthik Sridharan (172):1−59, 2019 PDF BibTeX
-
Fast Automatic Smoothing for Generalized Additive Models
Yousra El-Bachir, Anthony C. Davison (173):1−27, 2019 PDF BibTeX
-
Learning Overcomplete, Low Coherence Dictionaries with Linear Inference
Jesse A. Livezey, Alejandro F. Bujan, Friedrich T. Sommer (174):1−42, 2019 PDF BibTeX
-
DataWig: Missing Value Imputation for Tables
Felix Biessmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov, Dustin Lange, David Salinas (175):1−6, 2019 codePDF BibTeX
-
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takáč, Marten van Dijk (176):1−49, 2019 PDF BibTeX
-
All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously
Aaron Fisher, Cynthia Rudin, Francesca Dominici (177):1−81, 2019 PDF BibTeX
-
Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning
Daniel C. Castro, Jeremy Tan, Bernhard Kainz, Ender Konukoglu, Ben Glocker (178):1−29, 2019 PDF BibTeX
-
Differentiable reservoir computing
Lyudmila Grigoryeva, Juan-Pablo Ortega (179):1−62, 2019 PDF BibTeX
-
DPPy: DPP Sampling with Python
Guillaume Gautier, Guillermo Polito, Rémi Bardenet, Michal Valko (180):1−7, 2019 codePDF BibTeX
-
Neural Empirical Bayes
-
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez (182):1−46, 2019 PDF BibTeX
-
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, Bin Yu (183):1−42, 2019 PDF BibTeX
-
Why do deep convolutional networks generalize so poorly to small image transformations?