JMLR Volume 11
-
An Efficient Explanation of Individual Classifications using Game Theory
-
Online Learning for Matrix Factorization and Sparse Coding
Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro (2):19−60, 2010 PDF BibTeX
-
Model Selection: Beyond the Bayesian/Frequentist Divide
Isabelle Guyon, Amir Saffari, Gideon Dror, Gavin Cawley (3):61−87, 2010 PDF BibTeX
-
On-Line Sequential Bin Packing
András György, Gábor Lugosi, György Ottucsàk (4):89−109, 2010 PDF BibTeX
-
Classification Methods with Reject Option Based on Convex Risk Minimization
-
An Investigation of Missing Data Methods for Classification Trees Applied to Binary Response Data
Yufeng Ding, Jeffrey S. Simonoff (6):131−170, 2010 PDF BibTeX
-
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation
Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos (7):171−234, 2010 PDF BibTeX
-
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions
Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos (8):235−284, 2010 PDF BibTeX
-
Optimal Search on Clustered Structural Constraint for Learning Bayesian Network Structure
Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru Miyano (9):285−310, 2010 PDF BibTeX
-
Bundle Methods for Regularized Risk Minimization
Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le (10):311−365, 2010 PDF BibTeX
-
A Convergent Online Single Time Scale Actor Critic Algorithm
-
Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting
Philippos Mordohai, Gérard Medioni (12):411−450, 2010 PDF BibTeX
-
Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization
Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, Samuel Kaski (13):451−490, 2010 PDF BibTeX
-
Classification Using Geometric Level Sets
Kush R. Varshney, Alan S. Willsky (14):491−516, 2010 PDF BibTeX
-
Generalized Power Method for Sparse Principal Component Analysis
Michel Journée, Yurii Nesterov, Peter Richtárik, Rodolphe Sepulchre (15):517−553, 2010 PDF BibTeX
-
Approximate Tree Kernels
Konrad Rieck, Tammo Krueger, Ulf Brefeld, Klaus-Robert Müller (16):555−580, 2010 PDF BibTeX
-
On Finding Predictors for Arbitrary Families of Processes
-
A Rotation Test to Verify Latent Structure
-
Why Does Unsupervised Pre-training Help Deep Learning?
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio (19):625−660, 2010 PDF BibTeX
-
Error-Correcting Output Codes Library
Sergio Escalera, Oriol Pujol, Petia Radeva (20):661−664, 2010 codePDF BibTeX
-
Second-Order Bilinear Discriminant Analysis
Christoforos Christoforou, Robert Haralick, Paul Sajda, Lucas C. Parra (21):665−685, 2010 PDF BibTeX
-
On the Rate of Convergence of the Bagged Nearest Neighbor Estimate
Gérard Biau, Frédéric Cérou, Arnaud Guyader (22):687−712, 2010 PDF BibTeX
-
A Fast Hybrid Algorithm for Large-Scale l1-Regularized Logistic Regression
Jianing Shi, Wotao Yin, Stanley Osher, Paul Sajda (23):713−741, 2010 PDF BibTeX
-
PyBrain
Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen Schmidhuber (24):743−746, 2010 PDF BibTeX
-
Maximum Relative Margin and Data-Dependent Regularization
Pannagadatta K. Shivaswamy, Tony Jebara (25):747−788, 2010 PDF BibTeX
-
Stability Bounds for Stationary φ-mixing and β-mixing Processes
Mehryar Mohri, Afshin Rostamizadeh (26):789−814, 2010 PDF BibTeX
-
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models
Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin (27):815−848, 2010 PDF BibTeX
-
A Streaming Parallel Decision Tree Algorithm
-
Image Denoising with Kernels Based on Natural Image Relations
Valero Laparra, Juan Gutiérrez, Gustavo Camps-Valls, Jesús Malo (29):873−903, 2010 PDF BibTeX
-
On Learning with Integral Operators
Lorenzo Rosasco, Mikhail Belkin, Ernesto De Vito (30):905−934, 2010 PDF BibTeX
-
On Spectral Learning
Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil (31):935−953, 2010 PDF BibTeX
-
Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data
Gideon S. Mann, Andrew McCallum (32):955−984, 2010 PDF BibTeX
-
Kronecker Graphs: An Approach to Modeling Networks
Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, Zoubin Ghahramani (33):985−1042, 2010 PDF BibTeX
-
Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes
Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright (34):1043−1080, 2010 PDF BibTeX
-
Analysis of Multi-stage Convex Relaxation for Sparse Regularization
-
Large Scale Online Learning of Image Similarity Through Ranking
Gal Chechik, Varun Sharma, Uri Shalit, Samy Bengio (36):1109−1135, 2010 PDF BibTeX
-
Continuous Time Bayesian Network Reasoning and Learning Engine
Christian R. Shelton, Yu Fan, William Lam, Joon Lee, Jing Xu (37):1137−1140, 2010 codePDF BibTeX
-
SFO: A Toolbox for Submodular Function Optimization
-
A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning
Jin Yu, S.V.N. Vishwanathan, Simon Günter, Nicol N. Schraudolph (39):1145−1200, 2010 PDF BibTeX
-
Graph Kernels
S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt (40):1201−1242, 2010 PDF BibTeX
-
Stochastic Complexity and Generalization Error of a Restricted Boltzmann Machine in Bayesian Estimation
-
Approximate Inference on Planar Graphs using Loop Calculus and Belief Propagation
Vicenç Gómez, Hilbert J. Kappen, Michael Chertkov (42):1273−1296, 2010 PDF BibTeX
-
Learning From Crowds
Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, Linda Moy (43):1297−1322, 2010 PDF BibTeX
-
Unsupervised Supervised Learning I: Estimating Classification and Regression Errors without Labels
Pinar Donmez, Guy Lebanon, Krishnakumar Balasubramanian (44):1323−1351, 2010 PDF BibTeX
-
Learning Translation Invariant Kernels for Classification
Kamaledin Ghiasi-Shirazi, Reza Safabakhsh, Mostafa Shamsi (45):1353−1390, 2010 PDF BibTeX
-
Consistent Nonparametric Tests of Independence
Arthur Gretton, László Györfi (46):1391−1423, 2010 PDF BibTeX
-
Characterization, Stability and Convergence of Hierarchical Clustering Methods
Gunnar Carlsson, Facundo Mémoli (47):1425−1470, 2010 PDF BibTeX
-
Training and Testing Low-degree Polynomial Data Mappings via Linear SVM
Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin (48):1471−1490, 2010 PDF BibTeX
-
Quadratic Programming Feature Selection
Irene Rodriguez-Lujan, Ramon Huerta, Charles Elkan, Carlos Santa Cruz (49):1491−1516, 2010 PDF BibTeX
-
Hilbert Space Embeddings and Metrics on Probability Measures
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R.G. Lanckriet (50):1517−1561, 2010 PDF BibTeX
-
Near-optimal Regret Bounds for Reinforcement Learning
Thomas Jaksch, Ronald Ortner, Peter Auer (51):1563−1600, 2010 PDF BibTeX
-
MOA: Massive Online Analysis
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (52):1601−1604, 2010 codePDF BibTeX
-
On the Foundations of Noise-free Selective Classification
-
Introduction to Causal Inference
-
Consensus-Based Distributed Support Vector Machines
Pedro A. Forero, Alfonso Cano, Georgios B. Giannakis (55):1663−1707, 2010 PDF BibTeX
-
Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity
Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer (56):1709−1731, 2010 PDF BibTeX
-
FastInf: An Efficient Approximate Inference Library
Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan (57):1733−1736, 2010 codePDF BibTeX
-
Evolving Static Representations for Task Transfer
Phillip Verbancsics, Kenneth O. Stanley (58):1737−1769, 2010 PDF BibTeX
-
Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing
-
The SHOGUN Machine Learning Toolbox
Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, Vojt{{\ve}}ch Franc (60):1799−1802, 2010 codePDF BibTeX
-
How to Explain Individual Classification Decisions
David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, Klaus-Robert Müller (61):1803−1831, 2010 PDF BibTeX
-
Permutation Tests for Studying Classifier Performance
Markus Ojala, Gemma C. Garriga (62):1833−1863, 2010 PDF BibTeX
-
Sparse Spectrum Gaussian Process Regression
Miguel Lázaro-Gredilla, Joaquin Quiñnero-Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal (63):1865−1881, 2010 PDF BibTeX
-
Fast and Scalable Local Kernel Machines
Nicola Segata, Enrico Blanzieri (64):1883−1926, 2010 PDF BibTeX
-
Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes
Liva Ralaivola, Marie Szafranski, Guillaume Stempfel (65):1927−1956, 2010 PDF BibTeX
-
Practical Approaches to Principal Component Analysis in the Presence of Missing Values
Alexander Ilin, Tapani Raiko (66):1957−2000, 2010 PDF BibTeX
-
Posterior Regularization for Structured Latent Variable Models
Kuzman Ganchev, João Graça, Jennifer Gillenwater, Ben Taskar (67):2001−2049, 2010 PDF BibTeX
-
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, Karel Crombecq (68):2051−2055, 2010 codePDF BibTeX
-
Matrix Completion from Noisy Entries
Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh (69):2057−2078, 2010 PDF BibTeX
-
On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
Gavin C. Cawley, Nicola L. C. Talbot (70):2079−2107, 2010 PDF BibTeX
-
Model-based Boosting 2.0
Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner (71):2109−2113, 2010 codePDF BibTeX
-
Importance Sampling for Continuous Time Bayesian Networks
Yu Fan, Jing Xu, Christian R. Shelton (72):2115−2140, 2010 PDF BibTeX
-
Matched Gene Selection and Committee Classifier for Molecular Classification of Heterogeneous Diseases
Guoqiang Yu, Yuanjian Feng, David J. Miller, Jianhua Xuan, Eric P. Hoffman, Robert Clarke, Ben Davidson, Ie-Ming Shih, Yue Wang (73):2141−2167, 2010 PDF BibTeX
-
libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models
-
Learning Gradients: Predictive Models that Infer Geometry and Statistical Dependence
Qiang Wu, Justin Guinney, Mauro Maggioni, Sayan Mukherjee (75):2175−2198, 2010 PDF BibTeX
-
Regularized Discriminant Analysis, Ridge Regression and Beyond
Zhihua Zhang, Guang Dai, Congfu Xu, Michael I. Jordan (76):2199−2228, 2010 PDF BibTeX
-
Erratum: SGDQN is Less Careful than Expected
Antoine Bordes, Léon Bottou, Patrick Gallinari, Jonathan Chang, S. Alex Smith (77):2229−2240, 2010 PDF BibTeX
-
Restricted Eigenvalue Properties for Correlated Gaussian Designs
Garvesh Raskutti, Martin J. Wainwright, Bin Yu (78):2241−2259, 2010 PDF BibTeX
-
High Dimensional Inverse Covariance Matrix Estimation via Linear Programming
-
Spectral Regularization Algorithms for Learning Large Incomplete Matrices
Rahul Mazumder, Trevor Hastie, Robert Tibshirani (80):2287−2322, 2010 PDF BibTeX
-
Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
Franz Pernkopf, Jeff A. Bilmes (81):2323−2360, 2010 PDF BibTeX
-
High-dimensional Variable Selection with Sparse Random Projections: Measurement Sparsity and Statistical Efficiency
Dapo Omidiran, Martin J. Wainwright (82):2361−2386, 2010 PDF BibTeX
-
Composite Binary Losses
Mark D. Reid, Robert C. Williamson (83):2387−2422, 2010 PDF BibTeX
-
Sparse Semi-supervised Learning Using Conjugate Functions
Shiliang Sun, John Shawe-Taylor (84):2423−2455, 2010 PDF BibTeX
-
Rademacher Complexities and Bounding the Excess Risk in Active Learning
-
Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data
Miloš Radovanović, Alexandros Nanopoulos, Mirjana Ivanović (86):2487−2531, 2010 PDF BibTeX
-
WEKA−Experiences with a Java Open-Source Project
Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten (87):2533−2541, 2010 PDF BibTeX
-
Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization
-
Stochastic Composite Likelihood
Joshua V. Dillon, Guy Lebanon (89):2597−2633, 2010 PDF BibTeX
-
Learnability, Stability and Uniform Convergence
Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, Karthik Sridharan (90):2635−2670, 2010 PDF BibTeX
-
Topology Selection in Graphical Models of Autoregressive Processes
Jitkomut Songsiri, Lieven Vandenberghe (91):2671−2705, 2010 PDF BibTeX
-
Using Contextual Representations to Efficiently Learn Context-Free Languages
Alexander Clark, Rémi Eyraud, Amaury Habrard (92):2707−2744, 2010 PDF BibTeX
-
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman (93):2745−2783, 2010 PDF BibTeX
-
Regret Bounds and Minimax Policies under Partial Monitoring
Jean-Yves Audibert, Sébastien Bubeck (94):2785−2836, 2010 PDF BibTeX
-
Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
Nguyen Xuan Vinh, Julien Epps, James Bailey (95):2837−2854, 2010 PDF BibTeX
-
Expectation Truncation and the Benefits of Preselection In Training Generative Models
-
Linear Algorithms for Online Multitask Classification
Giovanni Cavallanti, Nicoló Cesa-Bianchi, Claudio Gentile (97):2901−2934, 2010 PDF BibTeX
-
Tree Decomposition for Large-Scale SVM Problems
Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu (98):2935−2972, 2010 PDF BibTeX
-
Semi-Supervised Novelty Detection
Gilles Blanchard, Gyemin Lee, Clayton Scott (99):2973−3009, 2010 PDF BibTeX
-
Gaussian Processes for Machine Learning (GPML) Toolbox
Carl Edward Rasmussen, Hannes Nickisch (100):3011−3015, 2010 codePDF BibTeX
-
Covariance in Unsupervised Learning of Probabilistic Grammars
Shay B. Cohen, Noah A. Smith (101):3017−3051, 2010 PDF BibTeX
-
Inducing Tree-Substitution Grammars
Trevor Cohn, Phil Blunsom, Sharon Goldwater (102):3053−3096, 2010 PDF BibTeX
-
Collective Inference for Extraction MRFs Coupled with Symmetric Clique Potentials
Rahul Gupta, Sunita Sarawagi, Ajit A. Diwan (103):3097−3135, 2010 PDF BibTeX
-
A Generalized Path Integral Control Approach to Reinforcement Learning
Evangelos Theodorou, Jonas Buchli, Stefan Schaal (104):3137−3181, 2010 PDF BibTeX
-
A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification
Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin (105):3183−3234, 2010 PDF BibTeX
-
Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, Juha Karhunen (106):3235−3268, 2010 PDF BibTeX
-
Classification with Incomplete Data Using Dirichlet Process Priors
Chunping Wang, Xuejun Liao, Lawrence Carin, David B. Dunson (107):3269−3311, 2010 PDF BibTeX
-
Maximum Likelihood in Cost-Sensitive Learning: Model Specification, Approximations, and Upper Bounds
Jacek P. Dmochowski, Paul Sajda, Lucas C. Parra (108):3313−3332, 2010 PDF BibTeX
-
Learning Instance-Specific Predictive Models
Shyam Visweswaran, Gregory F. Cooper (109):3333−3369, 2010 PDF BibTeX
-
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol (110):3371−3408, 2010 PDF BibTeX
-
Lp-Nested Symmetric Distributions
Fabian Sinz, Matthias Bethge (111):3409−3451, 2010 PDF BibTeX
-
Efficient Algorithms for Conditional Independence Inference
Remco Bouckaert, Raymond Hemmecke, Silvia Lindner, Milan Studený (112):3453−3479, 2010 PDF BibTeX
-
An Exponential Model for Infinite Rankings
-
Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls
-
Incremental Sigmoid Belief Networks for Grammar Learning
James Henderson, Ivan Titov (115):3541−3570, 2010 PDF BibTeX
-
Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
-
PAC-Bayesian Analysis of Co-clustering and Beyond
Yevgeny Seldin, Naftali Tishby (117):3595−3646, 2010 PDF BibTeX
-
Learning Non-Stationary Dynamic Bayesian Networks
Joshua W. Robinson, Alexander J. Hartemink (118):3647−3680, 2010 PDF BibTeX