JMLR Volume 23
-
Joint Estimation and Inference for Data Integration Problems based on Multiple Multi-layered Gaussian Graphical Models
Subhabrata Majumdar, George Michailidis (1):1−53, 2022 codePDF BibTeX
-
Debiased Distributed Learning for Sparse Partial Linear Models in High Dimensions
-
Recovering shared structure from multiple networks with unknown edge distributions
Keith Levin, Asad Lodhia, Elizaveta Levina (3):1−48, 2022 PDF BibTeX
-
Exploiting locality in high-dimensional Factorial hidden Markov models
Lorenzo Rimella, Nick Whiteley (4):1−34, 2022 codePDF BibTeX
-
Empirical Risk Minimization under Random Censorship
Guillaume Ausset, Stephan Clémençon, François Portier (5):1−59, 2022 PDF BibTeX
-
XAI Beyond Classification: Interpretable Neural Clustering
Xi Peng, Yunfan Li, Ivor W. Tsang, Hongyuan Zhu, Jiancheng Lv, Joey Tianyi Zhou (6):1−28, 2022 codePDF BibTeX
-
Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes
Justin D. Silverman, Kimberly Roche, Zachary C. Holmes, Lawrence A. David, Sayan Mukherjee (7):1−42, 2022 codePDF BibTeX
-
Deep Learning in Target Space
Michael Fairbank, Spyridon Samothrakis, Luca Citi (8):1−46, 2022 codePDF BibTeX
-
Scaling Laws from the Data Manifold Dimension
-
Interpolating Predictors in High-Dimensional Factor Regression
Florentina Bunea, Seth Strimas-Mackey, Marten Wegkamp (10):1−60, 2022 PDF BibTeX
-
Near Optimality of Finite Memory Feedback Policies in Partially Observed Markov Decision Processes
-
Approximate Information State for Approximate Planning and Reinforcement Learning in Partially Observed Systems
Jayakumar Subramanian, Amit Sinha, Raihan Seraj, Aditya Mahajan (12):1−83, 2022 codePDF BibTeX
-
Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality
Dimitris Bertsimas, Ryan Cory-Wright, Jean Pauphilet (13):1−35, 2022 codePDF BibTeX
-
On Generalizations of Some Distance Based Classifiers for HDLSS Data
Sarbojit Roy, Soham Sarkar, Subhajit Dutta, Anil K. Ghosh (14):1−41, 2022 PDF BibTeX
-
A Stochastic Bundle Method for Interpolation
Alasdair Paren, Leonard Berrada, Rudra P. K. Poudel, M. Pawan Kumar (15):1−57, 2022 codePDF BibTeX
-
TFPnP: Tuning-free Plug-and-Play Proximal Algorithms with Applications to Inverse Imaging Problems
Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Hua Huang, Carola-Bibiane Schönlieb (16):1−48, 2022 codePDF BibTeX
-
Spatial Multivariate Trees for Big Data Bayesian Regression
Michele Peruzzi, David B. Dunson (17):1−40, 2022 codePDF BibTeX
-
Decimated Framelet System on Graphs and Fast G-Framelet Transforms
Xuebin Zheng, Bingxin Zhou, Yu Guang Wang, Xiaosheng Zhuang (18):1−68, 2022 codePDF BibTeX
-
Universal Approximation in Dropout Neural Networks
Oxana A. Manita, Mark A. Peletier, Jacobus W. Portegies, Jaron Sanders, Albert Senen-Cerda (19):1−46, 2022 PDF BibTeX
-
Supervised Dimensionality Reduction and Visualization using Centroid-Encoder
-
Evolutionary Variational Optimization of Generative Models
Jakob Drefs, Enrico Guiraud, Jörg Lücke (21):1−51, 2022 codePDF BibTeX
-
LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data
Ali Eshragh, Fred Roosta, Asef Nazari, Michael W. Mahoney (22):1−36, 2022 PDF BibTeX
-
Fast and Robust Rank Aggregation against Model Misspecification
Yuangang Pan, Ivor W. Tsang, Weijie Chen, Gang Niu, Masashi Sugiyama (23):1−35, 2022 PDF BibTeX
-
On Biased Stochastic Gradient Estimation
Derek Driggs, Jingwei Liang, Carola-Bibiane Schönlieb (24):1−43, 2022 PDF BibTeX
-
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono, Daniel Paulin, Arnaud Doucet (25):1−69, 2022 PDF BibTeX
-
MurTree: Optimal Decision Trees via Dynamic Programming and Search
Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher Leckie, Kotagiri Ramamohanarao, Peter J. Stuckey (26):1−47, 2022 codePDF BibTeX
-
Data-Derived Weak Universal Consistency
Narayana Santhanam, Venkatachalam Anantharam, Wojciech Szpankowski (27):1−55, 2022 PDF BibTeX
-
Novel Min-Max Reformulations of Linear Inverse Problems
Mohammed Rayyan Sheriff, Debasish Chatterjee (28):1−46, 2022 PDF BibTeX
-
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Kaiyi Ji, Junjie Yang, Yingbin Liang (29):1−41, 2022 PDF BibTeX
-
A Class of Conjugate Priors for Multinomial Probit Models which Includes the Multivariate Normal One
-
An Improper Estimator with Optimal Excess Risk in Misspecified Density Estimation and Logistic Regression
Jaouad Mourtada, Stéphane Gaïffas (31):1−49, 2022 PDF BibTeX
-
Active Learning for Nonlinear System Identification with Guarantees
Horia Mania, Michael I. Jordan, Benjamin Recht (32):1−30, 2022 PDF BibTeX
-
Model Averaging Is Asymptotically Better Than Model Selection For Prediction
-
SODEN: A Scalable Continuous-Time Survival Model through Ordinary Differential Equation Networks
Weijing Tang, Jiaqi Ma, Qiaozhu Mei, Ji Zhu (34):1−29, 2022 codePDF BibTeX
-
Optimality and Stability in Non-Convex Smooth Games
Guojun Zhang, Pascal Poupart, Yaoliang Yu (35):1−71, 2022 PDF BibTeX
-
Accelerated Zeroth-Order and First-Order Momentum Methods from Mini to Minimax Optimization
Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang (36):1−70, 2022 PDF BibTeX
-
Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric
Matteo Pegoraro, Mario Beraha (37):1−59, 2022 codePDF BibTeX
-
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi, Ritabrata Dutta (38):1−71, 2022 codePDF BibTeX
-
(f,Gamma)-Divergences: Interpolating between f-Divergences and Integral Probability Metrics
Jeremiah Birrell, Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, Luc Rey-Bellet (39):1−70, 2022 PDF BibTeX
-
Structure-adaptive Manifold Estimation
Nikita Puchkin, Vladimir Spokoiny (40):1−62, 2022 PDF BibTeX
-
The Correlation-assisted Missing Data Estimator
Timothy I. Cannings, Yingying Fan (41):1−49, 2022 PDF BibTeX
-
Approximation and Optimization Theory for Linear Continuous-Time Recurrent Neural Networks
Zhong Li, Jiequn Han, Weinan E, Qianxiao Li (42):1−85, 2022 PDF BibTeX
-
Sampling Permutations for Shapley Value Estimation
Rory Mitchell, Joshua Cooper, Eibe Frank, Geoffrey Holmes (43):1−46, 2022 PDF BibTeX
-
PAC Guarantees and Effective Algorithms for Detecting Novel Categories
Si Liu, Risheek Garrepalli, Dan Hendrycks, Alan Fern, Debashis Mondal, Thomas G. Dietterich (44):1−47, 2022 codePDF BibTeX
-
Optimal Transport for Stationary Markov Chains via Policy Iteration
Kevin O'Connor, Kevin McGoff, Andrew B. Nobel (45):1−52, 2022 codePDF BibTeX
-
Beyond Sub-Gaussian Noises: Sharp Concentration Analysis for Stochastic Gradient Descent
Wanrong Zhu, Zhipeng Lou, Wei Biao Wu (46):1−22, 2022 PDF BibTeX
-
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans (47):1−33, 2022 codePDF BibTeX
-
Overparameterization of Deep ResNet: Zero Loss and Mean-field Analysis
Zhiyan Ding, Shi Chen, Qin Li, Stephen J. Wright (48):1−65, 2022 PDF BibTeX
-
Innovations Autoencoder and its Application in One-class Anomalous Sequence Detection
-
Analytically Tractable Hidden-States Inference in Bayesian Neural Networks
-
Toolbox for Multimodal Learn (scikit-multimodallearn)
Dominique Benielli, Baptiste Bauvin, Sokol Koço, Riikka Huusari, Cécile Capponi, Hachem Kadri, François Laviolette (51):1−7, 2022 codePDF BibTeX
-
LinCDE: Conditional Density Estimation via Lindsey's Method
-
DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python
Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler (53):1−6, 2022 codePDF BibTeX
-
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, Frank Hutter (54):1−9, 2022 codePDF BibTeX
-
Bayesian Pseudo Posterior Mechanism under Asymptotic Differential Privacy
Terrance D. Savitsky, Matthew R.Williams, Jingchen Hu (55):1−37, 2022 PDF BibTeX
-
solo-learn: A Library of Self-supervised Methods for Visual Representation Learning
Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, Elisa Ricci (56):1−6, 2022 codePDF BibTeX
-
Inherent Tradeoffs in Learning Fair Representations
-
A Statistical Approach for Optimal Topic Model Identification
Craig M. Lewis, Francesco Grossetti (58):1−20, 2022 PDF BibTeX
-
Causal Classification: Treatment Effect Estimation vs. Outcome Prediction
Carlos Fernández-Loría, Foster Provost (59):1−35, 2022 PDF BibTeX
-
A Unifying Framework for Variance-Reduced Algorithms for Findings Zeroes of Monotone operators
Xun Zhang, William B. Haskell, Zhisheng Ye (60):1−44, 2022 PDF BibTeX
-
Sparse Additive Gaussian Process Regression
Hengrui Luo, Giovanni Nattino, Matthew T. Pratola (61):1−34, 2022 PDF BibTeX
-
The AIM and EM Algorithms for Learning from Coarse Data
-
Additive Nonlinear Quantile Regression in Ultra-high Dimension
-
Stochastic Zeroth-Order Optimization under Nonstationarity and Nonconvexity
Abhishek Roy, Krishnakumar Balasubramanian, Saeed Ghadimi, Prasant Mohapatra (64):1−47, 2022 PDF BibTeX
-
On the Complexity of Approximating Multimarginal Optimal Transport
Tianyi Lin, Nhat Ho, Marco Cuturi, Michael I. Jordan (65):1−43, 2022 PDF BibTeX
-
New Insights for the Multivariate Square-Root Lasso
-
Are All Layers Created Equal?
Chiyuan Zhang, Samy Bengio, Yoram Singer (67):1−28, 2022 PDF BibTeX
-
Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters
Wei Zhu, Qiang Qiu, Robert Calderbank, Guillermo Sapiro, Xiuyuan Cheng (68):1−45, 2022 PDF BibTeX
-
Asymptotic Network Independence and Step-Size for a Distributed Subgradient Method
-
Generalized Sparse Additive Models
Asad Haris, Noah Simon, Ali Shojaie (70):1−56, 2022 codePDF BibTeX
-
Multiple-Splitting Projection Test for High-Dimensional Mean Vectors
-
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange, Kyle Helfrich, Qiang Ye (72):1−41, 2022 PDF BibTeX
-
A Kernel Two-Sample Test for Functional Data
-
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Maurizio Filippone (74):1−56, 2022 codePDF BibTeX
-
Mutual Information Constraints for Monte-Carlo Objectives to Prevent Posterior Collapse Especially in Language Modelling
Gábor Melis, András György, Phil Blunsom (75):1−36, 2022 PDF BibTeX
-
Joint Inference of Multiple Graphs from Matrix Polynomials
Madeline Navarro, Yuhao Wang, Antonio G. Marques, Caroline Uhler, Santiago Segarra (76):1−35, 2022 PDF BibTeX
-
Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits
Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Maillard, Julien Seznec (77):1−40, 2022 codePDF BibTeX
-
Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism
Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos (78):1−49, 2022 PDF BibTeX
-
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao, Aki Vehtari, Andrew Gelman (79):1−45, 2022 PDF BibTeX
-
Posterior Asymptotics for Boosted Hierarchical Dirichlet Process Mixtures
Marta Catalano, Pierpaolo De Blasi, Antonio Lijoi, Igor Pruenster (80):1−23, 2022 PDF BibTeX
-
Dependent randomized rounding for clustering and partition systems with knapsack constraints
David G. Harris, Thomas Pensyl, Aravind Srinivasan, Khoa Trinh (81):1−41, 2022 PDF BibTeX
-
FuDGE: A Method to Estimate a Functional Differential Graph in a High-Dimensional Setting
Boxin Zhao, Y. Samuel Wang, Mladen Kolar (82):1−82, 2022 codePDF BibTeX
-
Prior Adaptive Semi-supervised Learning with Application to EHR Phenotyping
Yichi Zhang, Molei Liu, Matey Neykov, Tianxi Cai (83):1−25, 2022 codePDF BibTeX
-
Distributed Bayesian Varying Coefficient Modeling Using a Gaussian Process Prior
Rajarshi Guhaniyogi, Cheng Li, Terrance D. Savitsky, Sanvesh Srivastava (84):1−59, 2022 PDF BibTeX
-
A Distribution Free Conditional Independence Test with Applications to Causal Discovery
Zhanrui Cai, Runze Li, Yaowu Zhang (85):1−41, 2022 PDF BibTeX
-
Robust and scalable manifold learning via landmark diffusion for long-term medical signal processing
Chao Shen, Yu-Ting Lin, Hau-Tieng Wu (86):1−30, 2022 PDF BibTeX
-
CD-split and HPD-split: Efficient Conformal Regions in High Dimensions
Rafael Izbicki, Gilson Shimizu, Rafael B. Stern (87):1−32, 2022 codePDF BibTeX
-
Generalized Ambiguity Decomposition for Ranking Ensemble Learning
Hongzhi Liu, Yingpeng Du, Zhonghai Wu (88):1−36, 2022 PDF BibTeX
-
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy (89):1−64, 2022 PDF BibTeX
-
Accelerating Adaptive Cubic Regularization of Newton's Method via Random Sampling
Xi Chen, Bo Jiang, Tianyi Lin, Shuzhong Zhang (90):1−38, 2022 PDF BibTeX
-
When Hardness of Approximation Meets Hardness of Learning
-
Gauss-Legendre Features for Gaussian Process Regression
-
Regularized K-means Through Hard-Thresholding
Jakob Raymaekers, Ruben H. Zamar (93):1−48, 2022 codePDF BibTeX
-
Multiple Testing in Nonparametric Hidden Markov Models: An Empirical Bayes Approach
Kweku Abraham, Ismaël Castillo, Elisabeth Gassiat (94):1−57, 2022 PDF BibTeX
-
Attraction-Repulsion Spectrum in Neighbor Embeddings
Jan Niklas Böhm, Philipp Berens, Dmitry Kobak (95):1−32, 2022 codePDF BibTeX
-
Rethinking Nonlinear Instrumental Variable Models through Prediction Validity
Chunxiao Li, Cynthia Rudin, Tyler H. McCormick (96):1−55, 2022 PDF BibTeX
-
Unlabeled Data Help in Graph-Based Semi-Supervised Learning: A Bayesian Nonparametrics Perspective
-
PECOS: Prediction for Enormous and Correlated Output Spaces
Hsiang-Fu Yu, Kai Zhong, Jiong Zhang, Wei-Cheng Chang, Inderjit S. Dhillon (98):1−32, 2022 codePDF BibTeX
-
Distributed Learning of Finite Gaussian Mixtures
-
Total Stability of SVMs and Localized SVMs
Hannes Köhler, Andreas Christmann (100):1−41, 2022 PDF BibTeX
-
Towards An Efficient Approach for the Nonconvex lp Ball Projection: Algorithm and Analysis
Xiangyu Yang, Jiashan Wang, Hao Wang (101):1−31, 2022 PDF BibTeX
-
Sufficient reductions in regression with mixed predictors
Efstathia Bura, Liliana Forzani, Rodrigo Garcia Arancibia, Pamela Llop, Diego Tomassi (102):1−47, 2022 codePDF BibTeX
-
The EM Algorithm is Adaptively-Optimal for Unbalanced Symmetric Gaussian Mixtures
-
Efficient Least Squares for Estimating Total Effects under Linearity and Causal Sufficiency
F. Richard Guo, Emilija Perković (104):1−41, 2022 codePDF BibTeX
-
Globally Injective ReLU Networks
Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dokmanić, Maarten de Hoop (105):1−55, 2022 PDF BibTeX
-
Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold
Bokun Wang, Shiqian Ma, Lingzhou Xue (106):1−33, 2022 PDF BibTeX
-
IALE: Imitating Active Learner Ensembles
Christoffer Löffler, Christopher Mutschler (107):1−29, 2022 codePDF BibTeX
-
Bayesian subset selection and variable importance for interpretable prediction and classification
-
Conditions and Assumptions for Constraint-based Causal Structure Learning
-
EiGLasso for Scalable Sparse Kronecker-Sum Inverse Covariance Estimation
-
Advantage of Deep Neural Networks for Estimating Functions with Singularity on Hypersurfaces
Masaaki Imaizumi, Kenji Fukumizu (111):1−54, 2022 PDF BibTeX
-
Sum of Ranked Range Loss for Supervised Learning
Shu Hu, Yiming Ying, Xin Wang, Siwei Lyu (112):1−44, 2022 codePDF BibTeX
-
The Two-Sided Game of Googol
José Correa, Andrés Cristi, Boris Epstein, José Soto (113):1−37, 2022 PDF BibTeX
-
ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction
Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, Yi Ma (114):1−103, 2022 codePDF BibTeX
-
Cauchy–Schwarz Regularized Autoencoder
Linh Tran, Maja Pantic, Marc Peter Deisenroth (115):1−37, 2022 PDF BibTeX
-
An Error Analysis of Generative Adversarial Networks for Learning Distributions
Jian Huang, Yuling Jiao, Zhen Li, Shiao Liu, Yang Wang, Yunfei Yang (116):1−43, 2022 PDF BibTeX
-
OVERT: An Algorithm for Safety Verification of Neural Network Control Policies for Nonlinear Systems
Chelsea Sidrane, Amir Maleki, Ahmed Irfan, Mykel J. Kochenderfer (117):1−45, 2022 codePDF BibTeX
-
Under-bagging Nearest Neighbors for Imbalanced Classification
Hanyuan Hang, Yuchao Cai, Hanfang Yang, Zhouchen Lin (118):1−63, 2022 PDF BibTeX
-
A spectral-based analysis of the separation between two-layer neural networks and linear methods
-
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
William Fedus, Barret Zoph, Noam Shazeer (120):1−39, 2022 codePDF BibTeX
-
Online Mirror Descent and Dual Averaging: Keeping Pace in the Dynamic Case
Huang Fang, Nicholas J. A. Harvey, Victor S. Portella, Michael P. Friedlander (121):1−38, 2022 PDF BibTeX
-
Depth separation beyond radial functions
Luca Venturi, Samy Jelassi, Tristan Ozuch, Joan Bruna (122):1−56, 2022 PDF BibTeX
-
Provable Tensor-Train Format Tensor Completion by Riemannian Optimization
Jian-Feng Cai, Jingyang Li, Dong Xia (123):1−77, 2022 PDF BibTeX
-
Darts: User-Friendly Modern Machine Learning for Time Series
Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime Dumonal, Jan Kościsz, Dennis Bader, Frédérick Gusset, Mounir Benheddi, Camila Williamson, Michal Kosinski, Matej Petrik, Gaël Grosch (124):1−6, 2022 codePDF BibTeX
-
Foolish Crowds Support Benign Overfitting
Niladri S. Chatterji, Philip M. Long (125):1−12, 2022 PDF BibTeX
-
Neural Estimation of Statistical Divergences
Sreejith Sreekumar, Ziv Goldfeld (126):1−75, 2022 PDF BibTeX
-
Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process Regression with Matérn Correlations
Haoyuan Chen, Liang Ding, Rui Tuo (127):1−32, 2022 PDF BibTeX
-
Power Iteration for Tensor PCA
Jiaoyang Huang, Daniel Z. Huang, Qing Yang, Guang Cheng (128):1−47, 2022 PDF BibTeX
-
On the Approximation of Cooperative Heterogeneous Multi-Agent Reinforcement Learning (MARL) using Mean Field Control (MFC)
Washim Uddin Mondal, Mridul Agarwal, Vaneet Aggarwal, Satish V. Ukkusuri (129):1−46, 2022 PDF BibTeX
-
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Alexander Shevchenko, Vyacheslav Kungurtsev, Marco Mondelli (130):1−55, 2022 PDF BibTeX
-
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Julie Nutini, Issam Laradji, Mark Schmidt (131):1−74, 2022 codePDF BibTeX
-
An Optimization-centric View on Bayes' Rule: Reviewing and Generalizing Variational Inference
Jeremias Knoblauch, Jack Jewson, Theodoros Damoulas (132):1−109, 2022 codePDF BibTeX
-
Manifold Coordinates with Physical Meaning
Samson J. Koelle, Hanyu Zhang, Marina Meila, Yu-Chia Chen (133):1−57, 2022 codePDF BibTeX
-
Transfer Learning in Information Criteria-based Feature Selection
Shaohan Chen, Nikolaos V. Sahinidis, Chuanhou Gao (134):1−105, 2022 codePDF BibTeX
-
Recovery and Generalization in Over-Realized Dictionary Learning
Jeremias Sulam, Chong You, Zhihui Zhu (135):1−23, 2022 PDF BibTeX
-
Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization
Quanming Yao, Yaqing Wang, Bo Han, James T. Kwok (136):1−60, 2022 codePDF BibTeX
-
On the Efficiency of Entropic Regularized Algorithms for Optimal Transport
Tianyi Lin, Nhat Ho, Michael I. Jordan (137):1−42, 2022 PDF BibTeX
-
Exact simulation of diffusion first exit times: algorithm acceleration
Samuel Herrmann, Cristina Zucca (138):1−20, 2022 codePDF BibTeX
-
No Weighted-Regret Learning in Adversarial Bandits with Delays
Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose Blanchet (139):1−43, 2022 PDF BibTeX
-
Non-asymptotic and Accurate Learning of Nonlinear Dynamical Systems
-
The Importance of Being Correlated: Implications of Dependence in Joint Spectral Inference across Multiple Networks
Konstantinos Pantazis, Avanti Athreya, Jesus Arroyo, William N Frost, Evan S Hill, Vince Lyzinski (141):1−77, 2022 PDF BibTeX
-
A Perturbation-Based Kernel Approximation Framework
-
Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning
Alex A. Gorodetsky, Cosmin Safta, John D. Jakeman (143):1−29, 2022 PDF BibTeX
-
A Momentumized, Adaptive, Dual Averaged Gradient Method
-
A Generalized Projected Bellman Error for Off-policy Value Estimation in Reinforcement Learning
Andrew Patterson, Adam White, Martha White (145):1−61, 2022 codePDF BibTeX
-
Adversarial Robustness Guarantees for Gaussian Processes
Andrea Patane, Arno Blaas, Luca Laurenti, Luca Cardelli, Stephen Roberts, Marta Kwiatkowska (146):1−55, 2022 codePDF BibTeX
-
On the Robustness to Misspecification of α-posteriors and Their Variational Approximations
Marco Avella Medina, José Luis Montiel Olea, Cynthia Rush, Amilcar Velez (147):1−51, 2022 PDF BibTeX
-
Online Nonnegative CP-dictionary Learning for Markovian Data
Hanbaek Lyu, Christopher Strohmeier, Deanna Needell (148):1−50, 2022 codePDF BibTeX
-
Implicit Differentiation for Fast Hyperparameter Selection in Non-Smooth Convex Learning
Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon (149):1−43, 2022 codePDF BibTeX
-
EV-GAN: Simulation of extreme events with ReLU neural networks
Michaël Allouche, Stéphane Girard, Emmanuel Gobet (150):1−39, 2022 PDF BibTeX
-
Universal Approximation of Functions on Sets
Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, Ingmar Posner (151):1−56, 2022 PDF BibTeX
-
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning
Sébastien Forestier, Rémy Portelas, Yoan Mollard, Pierre-Yves Oudeyer (152):1−41, 2022 PDF BibTeX
-
Truncated Emphatic Temporal Difference Methods for Prediction and Control
Shangtong Zhang, Shimon Whiteson (153):1−59, 2022 codePDF BibTeX
-
Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach
-
Principal Components Bias in Over-parameterized Linear Models, and its Manifestation in Deep Neural Networks
-
Statistical Rates of Convergence for Functional Partially Linear Support Vector Machines for Classification
Yingying Zhang, Yan-Yong Zhao, Heng Lian (156):1−24, 2022 PDF BibTeX
-
A universally consistent learning rule with a universally monotone error
-
ktrain: A Low-Code Library for Augmented Machine Learning
-
Structure Learning for Directed Trees
Martin E. Jakobsen, Rajen D. Shah, Peter Bühlmann, Jonas Peters (159):1−97, 2022 codePDF BibTeX
-
Fairness-Aware PAC Learning from Corrupted Data
Nikola Konstantinov, Christoph H. Lampert (160):1−60, 2022 PDF BibTeX
-
Topologically penalized regression on manifolds
Olympio Hacquard, Krishnakumar Balasubramanian, Gilles Blanchard, Clément Levrard, Wolfgang Polonik (161):1−39, 2022 codePDF BibTeX
-
Explicit Convergence Rates of Greedy and Random Quasi-Newton Methods
Dachao Lin, Haishan Ye, Zhihua Zhang (162):1−40, 2022 PDF BibTeX
-
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements
Tian Tong, Cong Ma, Ashley Prater-Bennette, Erin Tripp, Yuejie Chi (163):1−77, 2022 codePDF BibTeX
-
Solving L1-regularized SVMs and Related Linear Programs: Revisiting the Effectiveness of Column and Constraint Generation
Antoine Dedieu, Rahul Mazumder, Haoyue Wang (164):1−41, 2022 PDF BibTeX
-
Improved Classification Rates for Localized SVMs
Ingrid Blaschzyk, Ingo Steinwart (165):1−59, 2022 PDF BibTeX
-
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson, Uri Shalit, Nathan Kallus, David Sontag (166):1−50, 2022 PDF BibTeX
-
Unbiased estimators for random design regression
Michał Dereziński, Manfred K. Warmuth, Daniel Hsu (167):1−46, 2022 PDF BibTeX
-
A Worst Case Analysis of Calibrated Label Ranking Multi-label Classification Method
Lucas Henrique Sousa Mello, Flávio Miguel Varejão, Alexandre Loureiros Rodrigues (168):1−30, 2022 PDF BibTeX
-
D-GCCA: Decomposition-based Generalized Canonical Correlation Analysis for Multi-view High-dimensional Data
-
Scalable and Efficient Hypothesis Testing with Random Forests
Tim Coleman, Wei Peng, Lucas Mentch (170):1−35, 2022 PDF BibTeX
-
Interlocking Backpropagation: Improving depthwise model-parallelism
Aidan N. Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, Yarin Gal (171):1−28, 2022 PDF BibTeX
-
Projection-free Distributed Online Learning with Sublinear Communication Complexity
Yuanyu Wan, Guanghui Wang, Wei-Wei Tu, Lijun Zhang (172):1−53, 2022 PDF BibTeX
-
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol, Stefan Zohren, Stephen Roberts (173):1−65, 2022 PDF BibTeX
-
Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
Ali Ghadirzadeh, Petra Poklukar, Karol Arndt, Chelsea Finn, Ville Kyrki, Danica Kragic, Mårten Björkman (174):1−37, 2022 PDF BibTeX
-
Improved Generalization Bounds for Adversarially Robust Learning
Idan Attias, Aryeh Kontorovich, Yishay Mansour (175):1−31, 2022 PDF BibTeX
-
Signature Moments to Characterize Laws of Stochastic Processes
Ilya Chevyrev, Harald Oberhauser (176):1−42, 2022 PDF BibTeX
-
Asymptotic Analysis of Sampling Estimators for Randomized Numerical Linear Algebra Algorithms
Ping Ma, Yongkai Chen, Xinlian Zhang, Xin Xing, Jingyi Ma, Michael W. Mahoney (177):1−45, 2022 PDF BibTeX
-
Logarithmic Regret for Episodic Continuous-Time Linear-Quadratic Reinforcement Learning over a Finite-Time Horizon
Matteo Basei, Xin Guo, Anran Hu, Yufei Zhang (178):1−34, 2022 PDF BibTeX
-
KL-UCB-Switch: Optimal Regret Bounds for Stochastic Bandits from Both a Distribution-Dependent and a Distribution-Free Viewpoints
Aurélien Garivier, Hédi Hadiji, Pierre Ménard, Gilles Stoltz (179):1−66, 2022 PDF BibTeX
-
Matrix Completion with Covariate Information and Informative Missingness
Huaqing Jin, Yanyuan Ma, Fei Jiang (180):1−62, 2022 codePDF BibTeX
-
Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent
David Holzmüller, Ingo Steinwart (181):1−82, 2022 codePDF BibTeX
-
Extensions to the Proximal Distance Method of Constrained Optimization
Alfonso Landeros, Oscar Hernan Madrid Padilla, Hua Zhou, Kenneth Lange (182):1−45, 2022 codePDF BibTeX
-
Boulevard: Regularized Stochastic Gradient Boosted Trees and Their Limiting Distribution
-
Statistical Optimality and Stability of Tangent Transform Algorithms in Logit Models
Indrajit Ghosh, Anirban Bhattacharya, Debdeep Pati (184):1−42, 2022 PDF BibTeX
-
A Primer for Neural Arithmetic Logic Modules
Bhumika Mistry, Katayoun Farrahi, Jonathon Hare (185):1−58, 2022 codePDF BibTeX
-
Estimating Density Models with Truncation Boundaries using Score Matching
Song Liu, Takafumi Kanamori, Daniel J. Williams (186):1−38, 2022 codePDF BibTeX
-
Adversarial Classification: Necessary Conditions and Geometric Flows
Nicolás García Trillos, Ryan Murray (187):1−38, 2022 PDF BibTeX
-
Active Structure Learning of Bayesian Networks in an Observational Setting
-
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, Wotao Yin (189):1−59, 2022 codePDF BibTeX
-
Clustering with Semidefinite Programming and Fixed Point Iteration
Pedro Felzenszwalb, Caroline Klivans, Alice Paul (190):1−23, 2022 PDF BibTeX
-
Deep Limits and a Cut-Off Phenomenon for Neural Networks
-
A Bregman Learning Framework for Sparse Neural Networks
Leon Bungert, Tim Roith, Daniel Tenbrinck, Martin Burger (192):1−43, 2022 codePDF BibTeX
-
Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
-
Uniform deconvolution for Poisson Point Processes
Anna Bonnet, Claire Lacour, Franck Picard, Vincent Rivoirard (194):1−36, 2022 PDF BibTeX
-
Distributed Bootstrap for Simultaneous Inference Under High Dimensionality
Yang Yu, Shih-Kang Chao, Guang Cheng (195):1−77, 2022 codePDF BibTeX
-
Universal Approximation Theorems for Differentiable Geometric Deep Learning
Anastasis Kratsios, Léonie Papon (196):1−73, 2022 PDF BibTeX
-
InterpretDL: Explaining Deep Models in PaddlePaddle
Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Zeyu Chen, Dejing Dou (197):1−6, 2022 codePDF BibTeX
-
Meta-analysis of heterogeneous data: integrative sparse regression in high-dimensions
Subha Maity, Yuekai Sun, Moulinath Banerjee (198):1−50, 2022 codePDF BibTeX
-
A Forward Approach for Sufficient Dimension Reduction in Binary Classification
-
A Nonconvex Framework for Structured Dynamic Covariance Recovery
Katherine Tsai, Mladen Kolar, Oluwasanmi Koyejo (200):1−91, 2022 codePDF BibTeX
-
Three rates of convergence or separation via U-statistics in a dependent framework
Quentin Duchemin, Yohann De Castro, Claire Lacour (201):1−59, 2022 codePDF BibTeX
-
abess: A Fast Best-Subset Selection Library in Python and R
Jin Zhu, Xueqin Wang, Liyuan Hu, Junhao Huang, Kangkang Jiang, Yanhang Zhang, Shiyun Lin, Junxian Zhu (202):1−7, 2022 codePDF BibTeX
-
Testing Whether a Learning Procedure is Calibrated
Jon Cockayne, Matthew M. Graham, Chris J. Oates, T. J. Sullivan, Onur Teymur (203):1−36, 2022 PDF BibTeX
-
Selective Machine Learning of the Average Treatment Effect with an Invalid Instrumental Variable
Baoluo Sun, Yifan Cui, Eric Tchetgen Tchetgen (204):1−40, 2022 PDF BibTeX
-
Contraction rates for sparse variational approximations in Gaussian process regression
Dennis Nieman, Botond Szabo, Harry van Zanten (205):1−26, 2022 PDF BibTeX
-
Stochastic DCA with Variance Reduction and Applications in Machine Learning
Hoai An Le Thi, Hoang Phuc Hau Luu, Hoai Minh Le, Tao Pham Dinh (206):1−44, 2022 PDF BibTeX
-
Nonconvex Matrix Completion with Linearly Parameterized Factors
Ji Chen, Xiaodong Li, Zongming Ma (207):1−35, 2022 PDF BibTeX
-
tntorch: Tensor Network Learning with PyTorch
Mikhail Usvyatsov, Rafael Ballester-Ripoll, Konrad Schindler (208):1−6, 2022 codePDF BibTeX
-
Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs
Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I. Jordan, Mingsheng Long (209):1−47, 2022 codePDF BibTeX
-
A Unified Statistical Learning Model for Rankings and Scores with Application to Grant Panel Review
Michael Pearce, Elena A. Erosheva (210):1−33, 2022 PDF BibTeX
-
Efficient Inference for Dynamic Flexible Interactions of Neural Populations
Feng Zhou, Quyu Kong, Zhijie Deng, Jichao Kan, Yixuan Zhang, Cheng Feng, Jun Zhu (211):1−49, 2022 PDF BibTeX
-
Multi-Agent Multi-Armed Bandits with Limited Communication
Mridul Agarwal, Vaneet Aggarwal, Kamyar Azizzadenesheli (212):1−24, 2022 PDF BibTeX
-
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars H. B. Olsen, Ingrid K. Glad, Martin Jullum, Kjersti Aas (213):1−51, 2022 codePDF BibTeX
-
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Yoav Freund, Yi-An Ma, Tong Zhang (214):1−32, 2022 PDF BibTeX
-
Learning Operators with Coupled Attention
Georgios Kissas, Jacob H. Seidman, Leonardo Ferreira Guilhoto, Victor M. Preciado, George J. Pappas, Paris Perdikaris (215):1−63, 2022 PDF BibTeX
-
Kernel Partial Correlation Coefficient --- a Measure of Conditional Dependence
Zhen Huang, Nabarun Deb, Bodhisattva Sen (216):1−58, 2022 PDF BibTeX
-
Smooth Robust Tensor Completion for Background/Foreground Separation with Missing Pixels: Novel Algorithm with Convergence Guarantee
Bo Shen, Weijun Xie, Zhenyu (James) Kong (217):1−40, 2022 codePDF BibTeX
-
Learning Green's functions associated with time-dependent partial differential equations
Nicolas Boullé, Seick Kim, Tianyi Shi, Alex Townsend (218):1−34, 2022 PDF BibTeX
-
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, Michèle Sebag (219):1−62, 2022 codePDF BibTeX
-
Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks
Alireza Fallah, Mert Gürbüzbalaban, Asuman Ozdaglar, Umut Şimşekli, Lingjiong Zhu (220):1−96, 2022 PDF BibTeX
-
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess (221):1−68, 2022 PDF BibTeX
-
Variance Reduced EXTRA and DIGing and Their Optimal Acceleration for Strongly Convex Decentralized Optimization
Huan Li, Zhouchen Lin, Yongchun Fang (222):1−41, 2022 PDF BibTeX
-
On Acceleration for Convex Composite Minimization with Noise-Corrupted Gradients and Approximate Proximal Mapping
-
Getting Better from Worse: Augmented Bagging and A Cautionary Tale of Variable Importance
-
Two-Sample Testing on Ranked Preference Data and the Role of Modeling Assumptions
Charvi Rastogi, Sivaraman Balakrishnan, Nihar B. Shah, Aarti Singh (225):1−48, 2022 PDF BibTeX
-
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley (226):1−61, 2022 PDF BibTeX
-
Gaussian Process Parameter Estimation Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen, Lili Zheng, Raed Al Kontar, Garvesh Raskutti (227):1−59, 2022 PDF BibTeX
-
Asymptotic Study of Stochastic Adaptive Algorithms in Non-convex Landscape
-
Towards Practical Adam: Non-Convexity, Convergence Theory, and Mini-Batch Acceleration
Congliang Chen, Li Shen, Fangyu Zou, Wei Liu (229):1−47, 2022 PDF BibTeX
-
Multi-Task Dynamical Systems
Alex Bird, Christopher K. I. Williams, Christopher Hawthorne (230):1−52, 2022 PDF BibTeX
-
Representation Learning for Maximization of MI, Nonlinear ICA and Nonlinear Subspaces with Robust Density Ratio Estimation
Hiroaki Sasaki, Takashi Takenouchi (231):1−55, 2022 PDF BibTeX
-
Gaussian Process Boosting
-
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett (233):1−50, 2022 PDF BibTeX
-
Change point localization in dependent dynamic nonparametric random dot product graphs
Oscar Hernan Madrid Padilla, Yi Yu, Carey E. Priebe (234):1−59, 2022 PDF BibTeX
-
Bounding the Error of Discretized Langevin Algorithms for Non-Strongly Log-Concave Targets
Arnak S. Dalalyan, Avetik Karagulyan, Lionel Riou-Durand (235):1−38, 2022 PDF BibTeX
-
KoPA: Automated Kronecker Product Approximation
Chencheng Cai, Rong Chen, Han Xiao (236):1−44, 2022 PDF BibTeX
-
Nonparametric Principal Subspace Regression
Yang Zhou, Mark Koudstaal, Dengdeng Yu, Dehan Kong, Fang Yao (237):1−28, 2022 PDF BibTeX
-
A Wasserstein Distance Approach for Concentration of Empirical Risk Estimates
-
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
-
MALTS: Matching After Learning to Stretch
Harsh Parikh, Cynthia Rudin, Alexander Volfovsky (240):1−42, 2022 codePDF BibTeX
-
Weakly Supervised Disentangled Generative Causal Representation Learning
Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, Tong Zhang (241):1−55, 2022 codePDF BibTeX
-
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
Yang Ni, Francesco C. Stingo, Veerabhadran Baladandayuthapani (242):1−29, 2022 PDF BibTeX
-
Tree-based Node Aggregation in Sparse Graphical Models
-
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez (244):1−54, 2022 PDF BibTeX
-
Mappings for Marginal Probabilities with Applications to Models in Statistical Physics
-
Multivariate Boosted Trees and Applications to Forecasting and Control
Lorenzo Nespoli, Vasco Medici (246):1−47, 2022 codePDF BibTeX
-
Quantile regression with ReLU Networks: Estimators and minimax rates
Oscar Hernan Madrid Padilla, Wesley Tansey, Yanzhen Chen (247):1−42, 2022 codePDF BibTeX
-
Double Spike Dirichlet Priors for Structured Weighting
-
Projected Robust PCA with Application to Smooth Image Recovery
-
Non-asymptotic Properties of Individualized Treatment Rules from Sequentially Rule-Adaptive Trials
Daiqi Gao, Yufeng Liu, Donglin Zeng (250):1−42, 2022 PDF BibTeX
-
Using Active Queries to Infer Symmetric Node Functions of Graph Dynamical Systems
Abhijin Adiga, Chris J. Kuhlman, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, Richard E. Stearns (251):1−43, 2022 PDF BibTeX
-
A Closer Look at Embedding Propagation for Manifold Smoothing
Diego Velazquez, Pau Rodriguez, Josep M. Gonfaus, F. Xavier Roca, Jordi Gonzalez (252):1−27, 2022 PDF BibTeX
-
Greedification Operators for Policy Optimization: Investigating Forward and Reverse KL Divergences
Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, Martha White (253):1−79, 2022 PDF BibTeX
-
Adaptive Greedy Algorithm for Moderately Large Dimensions in Kernel Conditional Density Estimation
Minh-Lien Jeanne Nguyen, Claire Lacour, Vincent Rivoirard (254):1−74, 2022 PDF BibTeX
-
Simple Agent, Complex Environment: Efficient Reinforcement Learning with Agent States
Shi Dong, Benjamin Van Roy, Zhengyuan Zhou (255):1−54, 2022 PDF BibTeX
-
On Constraints in First-Order Optimization: A View from Non-Smooth Dynamical Systems
Michael Muehlebach, Michael I. Jordan (256):1−47, 2022 codePDF BibTeX
-
Sparse Continuous Distributions and Fenchel-Young Losses
André F. T. Martins, Marcos Treviso, António Farinhas, Pedro M. Q. Aguiar, Mário A. T. Figueiredo, Mathieu Blondel, Vlad Niculae (257):1−74, 2022 codePDF BibTeX
-
Tree-Based Models for Correlated Data
Assaf Rabinowicz, Saharon Rosset (258):1−31, 2022 PDF BibTeX
-
Learning Temporal Evolution of Spatial Dependence with Generalized Spatiotemporal Gaussian Process Models
-
A proof of convergence for the gradient descent optimization method with random initializations in the training of neural networks with ReLU activation for piecewise linear target functions
-
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, Frank Hutter (261):1−61, 2022 codePDF BibTeX
-
Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score
Muxuan Liang, Young-Geun Choi, Yang Ning, Maureen A Smith, Ying-Qi Zhao (262):1−65, 2022 codePDF BibTeX
-
The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer Linear Networks
Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett (263):1−48, 2022 PDF BibTeX
-
A Random Matrix Perspective on Random Tensors
José Henrique de M. Goulart, Romain Couillet, Pierre Comon (264):1−36, 2022 PDF BibTeX
-
Stochastic subgradient for composite convex optimization with functional constraints
-
Functional Linear Regression with Mixed Predictors
Daren Wang, Zifeng Zhao, Yi Yu, Rebecca Willett (266):1−94, 2022 codePDF BibTeX
-
Tianshou: A Highly Modularized Deep Reinforcement Learning Library
Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su, Jun Zhu (267):1−6, 2022 codePDF BibTeX
-
A Computationally Efficient Framework for Vector Representation of Persistence Diagrams
Kit C Chan, Umar Islambekov, Alexey Luchinsky, Rebecca Sanders (268):1−33, 2022 PDF BibTeX
-
Learning linear non-Gaussian directed acyclic graph with diverging number of nodes
Ruixuan Zhao, Xin He, Junhui Wang (269):1−34, 2022 PDF BibTeX
-
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave Sampling
Keru Wu, Scott Schmidler, Yuansi Chen (270):1−63, 2022 PDF BibTeX
-
Fast Stagewise Sparse Factor Regression
Kun Chen, Ruipeng Dong, Wanwan Xu, Zemin Zheng (271):1−45, 2022 PDF BibTeX
-
Communication-Constrained Distributed Quantile Regression with Optimal Statistical Guarantees
Kean Ming Tan, Heather Battey, Wen-Xin Zhou (272):1−61, 2022 PDF BibTeX
-
The Weighted Generalised Covariance Measure
Cyrill Scheidegger, Julia Hörrmann, Peter Bühlmann (273):1−68, 2022 PDF BibTeX
-
CleanRL: High-quality Single-file Implementations of Deep Reinforcement Learning Algorithms
Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, João G.M. Araújo (274):1−18, 2022 codePDF BibTeX
-
Policy Gradient and Actor-Critic Learning in Continuous Time and Space: Theory and Algorithms
-
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Shijun Zhang, Zuowei Shen, Haizhao Yang (276):1−60, 2022 PDF BibTeX
-
Nonstochastic Bandits with Composite Anonymous Feedback
Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Claudio Gentile, Yishay Mansour (277):1−24, 2022 PDF BibTeX
-
Jump Gaussian Process Model for Estimating Piecewise Continuous Regression Functions
-
Convergence Guarantees for the Good-Turing Estimator
-
Generalized Resubstitution for Classification Error Estimation
Parisa Ghane, Ulisses Braga-Neto (280):1−30, 2022 PDF BibTeX
-
Nonparametric adaptive control and prediction: theory and randomized algorithms
Nicholas M. Boffi, Stephen Tu, Jean-Jacques E. Slotine (281):1−46, 2022 PDF BibTeX
-
On the Convergence Rates of Policy Gradient Methods
-
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos, Nicolas Chopin, Simo Särkkä (283):1−39, 2022 codePDF BibTeX
-
Exact Partitioning of High-order Models with a Novel Convex Tensor Cone Relaxation
-
Deepchecks: A Library for Testing and Validating Machine Learning Models and Data
Shir Chorev, Philip Tannor, Dan Ben Israel, Noam Bressler, Itay Gabbay, Nir Hutnik, Jonatan Liberman, Matan Perlmutter, Yurii Romanyshyn, Lior Rokach (285):1−6, 2022 codePDF BibTeX
-
Integral Autoencoder Network for Discretization-Invariant Learning
Yong Zheng Ong, Zuowei Shen, Haizhao Yang (286):1−45, 2022 codePDF BibTeX
-
Information-Theoretic Characterization of the Generalization Error for Iterative Semi-Supervised Learning
Haiyun He, Hanshu Yan, Vincent Y. F. Tan (287):1−52, 2022 codePDF BibTeX
-
ReservoirComputing.jl: An Efficient and Modular Library for Reservoir Computing Models
Francesco Martinuzzi, Chris Rackauckas, Anas Abdelrehim, Miguel D. Mahecha, Karin Mora (288):1−8, 2022 codePDF BibTeX
-
Estimating Causal Effects under Network Interference with Bayesian Generalized Propensity Scores
Laura Forastiere, Fabrizia Mealli, Albert Wu, Edoardo M. Airoldi (289):1−61, 2022 PDF BibTeX
-
Regularized and Smooth Double Core Tensor Factorization for Heterogeneous Data
Davoud Ataee Tarzanagh, George Michailidis (290):1−49, 2022 codePDF BibTeX
-
Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
Lukasz Kidzinski, Francis K.C. Hui, David I. Warton, Trevor J. Hastie (291):1−29, 2022 codePDF BibTeX
-
Two-mode Networks: Inference with as Many Parameters as Actors and Differential Privacy
Qiuping Wang, Ting Yan, Binyan Jiang, Chenlei Leng (292):1−38, 2022 PDF BibTeX
-
Expected Regret and Pseudo-Regret are Equivalent When the Optimal Arm is Unique
Daron Anderson, Douglas J. Leith (293):1−12, 2022 PDF BibTeX
-
Linearization and Identification of Multiple-Attractor Dynamical Systems through Laplacian Eigenmaps
-
Semiparametric Inference For Causal Effects In Graphical Models With Hidden Variables
Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser (295):1−76, 2022 codePDF BibTeX
-
Stable Classification
Dimitris Bertsimas, Jack Dunn, Ivan Paskov (296):1−53, 2022 PDF BibTeX
-
Handling Hard Affine SDP Shape Constraints in RKHSs
Pierre-Cyril Aubin-Frankowski, Zoltan Szabo (297):1−54, 2022 codePDF BibTeX
-
JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON data
Šimon Mandlík, Matěj Račinský, Viliam Lisý, Tomáš Pevný (298):1−5, 2022 codePDF BibTeX
-
Interpretable Classification of Categorical Time Series Using the Spectral Envelope and Optimal Scalings
Zeda Li, Scott A. Bruce, Tian Cai (299):1−31, 2022 codePDF BibTeX
-
More Powerful Conditional Selective Inference for Generalized Lasso by Parametric Programming
Vo Nguyen Le Duy, Ichiro Takeuchi (300):1−37, 2022 codePDF BibTeX
-
Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data
-
On Instrumental Variable Regression for Deep Offline Policy Evaluation
Yutian Chen, Liyuan Xu, Caglar Gulcehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, Arnaud Doucet (302):1−40, 2022 codePDF BibTeX
-
Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks
Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, Pieter Ghysels (303):1−28, 2022 codePDF BibTeX
-
Variational Inference in high-dimensional linear regression
-
Tree-Values: Selective Inference for Regression Trees
Anna C. Neufeld, Lucy L. Gao, Daniela M. Witten (305):1−43, 2022 codePDF BibTeX
-
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang, Bob Carpenter, Andrew Gelman, Aki Vehtari (306):1−49, 2022 codePDF BibTeX
-
Learning from Noisy Pairwise Similarity and Unlabeled Data
Songhua Wu, Tongliang Liu, Bo Han, Jun Yu, Gang Niu, Masashi Sugiyama (307):1−34, 2022 codePDF BibTeX
-
On Regularized Square-root Regression Problems: Distributionally Robust Interpretation and Fast Computations
Hong T.M. Chu, Kim-Chuan Toh, Yangjing Zhang (308):1−39, 2022 PDF BibTeX
-
The Separation Capacity of Random Neural Networks
Sjoerd Dirksen, Martin Genzel, Laurent Jacques, Alexander Stollenwerk (309):1−47, 2022 PDF BibTeX
-
Detecting Latent Communities in Network Formation Models
Shujie Ma, Liangjun Su, Yichong Zhang (310):1−61, 2022 PDF BibTeX
-
Toward Understanding Convolutional Neural Networks from Volterra Convolution Perspective
Tenghui Li, Guoxu Zhou, Yuning Qiu, Qibin Zhao (311):1−50, 2022 codePDF BibTeX
-
Nystrom Regularization for Time Series Forecasting
Zirui Sun, Mingwei Dai, Yao Wang, Shao-Bo Lin (312):1−42, 2022 PDF BibTeX
-
Intrinsic Dimension Estimation Using Wasserstein Distance
Adam Block, Zeyu Jia, Yury Polyanskiy, Alexander Rakhlin (313):1−37, 2022 PDF BibTeX
-
Oracle Complexity in Nonsmooth Nonconvex Optimization
-
d3rlpy: An Offline Deep Reinforcement Learning Library
-
WarpDrive: Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
Tian Lan, Sunil Srinivasa, Huan Wang, Stephan Zheng (316):1−6, 2022 codePDF BibTeX
-
Nonparametric Neighborhood Selection in Graphical Models
-
Hamilton-Jacobi equations on graphs with applications to semi-supervised learning and data depth
Jeff Calder, Mahmood Ettehad (318):1−62, 2022 codePDF BibTeX
-
Self-Healing Robust Neural Networks via Closed-Loop Control
Zhuotong Chen, Qianxiao Li, Zheng Zhang (319):1−54, 2022 codePDF BibTeX
-
Network Regression with Graph Laplacians
Yidong Zhou, Hans-Georg Müller (320):1−41, 2022 codePDF BibTeX
-
On Low-rank Trace Regression under General Sampling Distribution
-
Community detection in sparse latent space models
Fengnan Gao, Zongming Ma, Hongsong Yuan (322):1−50, 2022 PDF BibTeX
-
Convergence Rates for Gaussian Mixtures of Experts
Nhat Ho, Chiao-Yu Yang, Michael I. Jordan (323):1−81, 2022 PDF BibTeX
-
Improving Bayesian Network Structure Learning in the Presence of Measurement Error
Yang Liu, Anthony C. Constantinou, Zhigao Guo (324):1−28, 2022 codePDF BibTeX
-
On Mixup Regularization
Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert (325):1−31, 2022 PDF BibTeX
-
Project and Forget: Solving Large-Scale Metric Constrained Problems
Rishi Sonthalia, Anna C. Gilbert (326):1−54, 2022 codePDF BibTeX
-
Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence
Mattes Mollenhauer, Stefan Klus, Christof Schütte, Péter Koltai (327):1−34, 2022 PDF BibTeX
-
Distributed Stochastic Gradient Descent: Nonconvexity, Nonsmoothness, and Convergence to Local Minima
Brian Swenson, Ryan Murray, H. Vincent Poor, Soummya Kar (328):1−62, 2022 PDF BibTeX
-
Joint Continuous and Discrete Model Selection via Submodularity
-
ALMA: Alternating Minimization Algorithm for Clustering Mixture Multilayer Network
Xing Fan, Marianna Pensky, Feng Yu, Teng Zhang (330):1−46, 2022 PDF BibTeX
-
The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation
Ulrike Schneider, Patrick Tardivel (331):1−36, 2022 PDF BibTeX
-
Maximum sampled conditional likelihood for informative subsampling
-
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid, Loris Michel, Jeffrey Näf, Peter Bühlmann, Nicolai Meinshausen (333):1−79, 2022 PDF BibTeX
-
Fully General Online Imitation Learning
Michael K. Cohen, Marcus Hutter, Neel Nanda (334):1−30, 2022 PDF BibTeX
-
Causal Aggregation: Estimation and Inference of Causal Effects by Constraint-Based Data Fusion
Jaime Roquero Gimenez, Dominik Rothenhäusler (335):1−60, 2022 PDF BibTeX
-
Faster Randomized Interior Point Methods for Tall/Wide Linear Programs
Agniva Chowdhury, Gregory Dexter, Palma London, Haim Avron, Petros Drineas (336):1−48, 2022 PDF BibTeX
-
Statistical Optimality and Computational Efficiency of Nystrom Kernel PCA
Nicholas Sterge, Bharath K. Sriperumbudur (337):1−32, 2022 PDF BibTeX
-
Interval-censored Hawkes processes
Marian-Andrei Rizoiu, Alexander Soen, Shidi Li, Pio Calderon, Leanne J. Dong, Aditya Krishna Menon, Lexing Xie (338):1−84, 2022 PDF BibTeX
-
Early Stopping for Iterative Regularization with General Loss Functions
-
Fundamental Limits and Tradeoffs in Invariant Representation Learning
Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar (340):1−49, 2022 PDF BibTeX
-
Information-theoretic Classification Accuracy: A Criterion that Guides Data-driven Combination of Ambiguous Outcome Labels in Multi-class Classification
Chihao Zhang, Yiling Elaine Chen, Shihua Zhang, Jingyi Jessica Li (341):1−65, 2022 codePDF BibTeX
-
SGD with Coordinate Sampling: Theory and Practice
Rémi Leluc, François Portier (342):1−47, 2022 codePDF BibTeX
-
Global Optimality and Finite Sample Analysis of Softmax Off-Policy Actor Critic under State Distribution Mismatch
Shangtong Zhang, Remi Tachet des Combes, Romain Laroche (343):1−91, 2022 codePDF BibTeX
-
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte, Alessandro Rudi, Céline Brouard, Juho Rousu, Florence d'Alché-Buc (344):1−50, 2022 PDF BibTeX
-
Constraint Reasoning Embedded Structured Prediction
Nan Jiang, Maosen Zhang, Willem-Jan van Hoeve, Yexiang Xue (345):1−40, 2022 codePDF BibTeX
-
Minimax optimal approaches to the label shift problem in non-parametric settings
Subha Maity, Yuekai Sun, Moulinath Banerjee (346):1−45, 2022 PDF BibTeX
-
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour, François Malgouyres, Franck Mamalet (347):1−56, 2022 codePDF BibTeX
-
Scalable Gaussian-process regression and variable selection using Vecchia approximations
Jian Cao, Joseph Guinness, Marc G. Genton, Matthias Katzfuss (348):1−30, 2022 codePDF BibTeX
-
OMLT: Optimization & Machine Learning Toolkit
Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird, Ruth Misener (349):1−8, 2022 codePDF BibTeX
-
Approximate Bayesian Computation via Classification
Yuexi Wang, Tetsuya Kaji, Veronika Rockova (350):1−49, 2022 PDF BibTeX
-
Metrics of Calibration for Probabilistic Predictions
Imanol Arrieta-Ibarra, Paman Gujral, Jonathan Tannen, Mark Tygert, Cherie Xu (351):1−54, 2022 codePDF BibTeX