JMLR Volume 25
-
On Truthing Issues in Supervised Classification
-
Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results and Construction
Yuze Han, Guangzeng Xie, Zhihua Zhang (2):1−86, 2024 PDF BibTeX
-
Power of knockoff: The impact of ranking algorithm, augmented design, and symmetric statistic
Zheng Tracy Ke, Jun S. Liu, Yucong Ma (3):1−67, 2024 PDF BibTeX
-
Fast Policy Extragradient Methods for Competitive Games with Entropy Regularization
Shicong Cen, Yuting Wei, Yuejie Chi (4):1−48, 2024 PDF BibTeX
-
Seeded Graph Matching for the Correlated Gaussian Wigner Model via the Projected Power Method
Ernesto Araya, Guillaume Braun, Hemant Tyagi (5):1−43, 2024 codePDF BibTeX
-
Model-Free Representation Learning and Exploration in Low-Rank MDPs
Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal (6):1−76, 2024 PDF BibTeX
-
Decorrelated Variable Importance
Isabella Verdinelli, Larry Wasserman (7):1−27, 2024 PDF BibTeX
-
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture Models
Yangjing Zhang, Ying Cui, Bodhisattva Sen, Kim-Chuan Toh (8):1−46, 2024 codePDF BibTeX
-
Exploration, Exploitation, and Engagement in Multi-Armed Bandits with Abandonment
-
Modeling Random Networks with Heterogeneous Reciprocity
-
Estimating the Minimizer and the Minimum Value of a Regression Function under Passive Design
Arya Akhavan, Davit Gogolashvili, Alexandre B. Tsybakov (11):1−37, 2024 PDF BibTeX
-
Critically Assessing the State of the Art in Neural Network Verification
Matthias König, Annelot W. Bosman, Holger H. Hoos, Jan N. van Rijn (12):1−53, 2024 PDF BibTeX
-
A Comparison of Continuous-Time Approximations to Stochastic Gradient Descent
-
Improving physics-informed neural networks with meta-learned optimization
-
On the Effect of Initialization: The Scaling Path of 2-Layer Neural Networks
Sebastian Neumayer, Lénaïc Chizat, Michael Unser (15):1−24, 2024 PDF BibTeX
-
Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
Nathan Kallus, Xiaojie Mao, Masatoshi Uehara (16):1−59, 2024 codePDF BibTeX
-
On Sufficient Graphical Models
-
Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box
Ryan Giordano, Martin Ingram, Tamara Broderick (18):1−39, 2024 codePDF BibTeX
-
Nonparametric Inference under B-bits Quantization
Kexuan Li, Ruiqi Liu, Ganggang Xu, Zuofeng Shang (19):1−68, 2024 PDF BibTeX
-
Iterate Averaging in the Quest for Best Test Error
Diego Granziol, Nicholas P. Baskerville, Xingchen Wan, Samuel Albanie, Stephen Roberts (20):1−55, 2024 codePDF BibTeX
-
Pursuit of the Cluster Structure of Network Lasso: Recovery Condition and Non-convex Extension
-
On the Generalization of Stochastic Gradient Descent with Momentum
Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher, Ashish Khisti, Ben Liang (22):1−56, 2024 PDF BibTeX
-
Post-Regularization Confidence Bands for Ordinary Differential Equations
-
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao (24):1−67, 2024 PDF BibTeX
-
On Tail Decay Rate Estimation of Loss Function Distributions
Etrit Haxholli, Marco Lorenzi (25):1−47, 2024 codePDF BibTeX
-
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward Rasmussen, Hong Ge (26):1−36, 2024 codePDF BibTeX
-
Optimal Bump Functions for Shallow ReLU networks: Weight Decay, Depth Separation, Curse of Dimensionality
-
Additive smoothing error in backward variational inference for general state-space models
Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff (28):1−33, 2024 PDF BibTeX
-
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov (29):1−47, 2024 PDF BibTeX
-
Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
Benjamin Gess, Sebastian Kassing, Vitalii Konarovskyi (30):1−27, 2024 PDF BibTeX
-
Sample-efficient Adversarial Imitation Learning
Dahuin Jung, Hyungyu Lee, Sungroh Yoon (31):1−32, 2024 PDF BibTeX
-
Heterogeneous-Agent Reinforcement Learning
Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, Yaodong Yang (32):1−67, 2024 codePDF BibTeX
-
Pygmtools: A Python Graph Matching Toolkit
Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan Wei, Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang, Junchi Yan (33):1−7, 2024 codePDF BibTeX
-
Effect-Invariant Mechanisms for Policy Generalization
Sorawit Saengkyongam, Niklas Pfister, Predrag Klasnja, Susan Murphy, Jonas Peters (34):1−36, 2024 PDF BibTeX
-
Deep Network Approximation: Beyond ReLU to Diverse Activation Functions
Shijun Zhang, Jianfeng Lu, Hongkai Zhao (35):1−39, 2024 PDF BibTeX
-
Sparse NMF with Archetypal Regularization: Computational and Robustness Properties
Kayhan Behdin, Rahul Mazumder (36):1−62, 2024 codePDF BibTeX
-
Distributed Gaussian Mean Estimation under Communication Constraints: Optimal Rates and Communication-Efficient Algorithms
-
Convergence for nonconvex ADMM, with applications to CT imaging
Rina Foygel Barber, Emil Y. Sidky (38):1−46, 2024 codePDF BibTeX
-
On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control
Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, Alec Koppel (39):1−58, 2024 PDF BibTeX
-
Survival Kernets: Scalable and Interpretable Deep Kernel Survival Analysis with an Accuracy Guarantee
-
Personalized PCA: Decoupling Shared and Unique Features
-
Invariant and Equivariant Reynolds Networks
Akiyoshi Sannai, Makoto Kawano, Wataru Kumagai (42):1−36, 2024 codePDF BibTeX
-
Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He, Tyler Farghly, Krishnakumar Balasubramanian, Murat A. Erdogdu (43):1−44, 2024 PDF BibTeX
-
Multiple Descent in the Multiple Random Feature Model
Xuran Meng, Jianfeng Yao, Yuan Cao (44):1−49, 2024 PDF BibTeX
-
Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
Lorenzo Pacchiardi, Rilwan A. Adewoyin, Peter Dueben, Ritabrata Dutta (45):1−64, 2024 codePDF BibTeX
-
A Multilabel Classification Framework for Approximate Nearest Neighbor Search
Ville Hyvönen, Elias Jääsaari, Teemu Roos (46):1−51, 2024 codePDF BibTeX
-
Efficient Modality Selection in Multimodal Learning
Yifei He, Runxiang Cheng, Gargi Balasubramaniam, Yao-Hung Hubert Tsai, Han Zhao (47):1−39, 2024 PDF BibTeX
-
Adam-family Methods for Nonsmooth Optimization with Convergence Guarantees
Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh (48):1−53, 2024 PDF BibTeX
-
Trained Transformers Learn Linear Models In-Context
Ruiqi Zhang, Spencer Frei, Peter L. Bartlett (49):1−55, 2024 PDF BibTeX