JMLR Volume 26
-
Efficiently Escaping Saddle Points in Bilevel Optimization
Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, Lifeng Lai (1):1−61, 2025 PDF BibTeX
-
Bayes Meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou, Pierre Alquier, Badr-Eddine Chérief-Abdellatif (2):1−60, 2025 PDF BibTeX
-
DisC2o-HD: Distributed causal inference with covariates shift for analyzing real-world high-dimensional data
Jiayi Tong, Jie Hu, George Hripcsak, Yang Ning, Yong Chen (3):1−50, 2025 PDF BibTeX
-
Deep Out-of-Distribution Uncertainty Quantification via Weight Entropy Maximization
Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis (4):1−68, 2025 PDF BibTeX
-
Enhancing Graph Representation Learning with Localized Topological Features
Zuoyu Yan, Qi Zhao, Ze Ye, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, Chao Chen (5):1−36, 2025 PDF BibTeX
-
Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents
Marco Pleines, Matthias Pallasch, Frank Zimmer, Mike Preuss (6):1−40, 2025 codePDF BibTeX
-
A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation
Hugo Lebeau, Florent Chatelain, Romain Couillet (7):1−64, 2025 PDF BibTeX
-
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao, Lingxiao Wang, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Chaochao Chen, Mladen Kolar (8):1−67, 2025 codePDF BibTeX
-
Test-Time Training on Video Streams
Renhao Wang, Yu Sun, Arnuv Tandon, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang (9):1−29, 2025 codePDF BibTeX
-
An Axiomatic Definition of Hierarchical Clustering
-
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin, Chi Jin, Michael I. Jordan (11):1−45, 2025 PDF BibTeX
-
Selective Inference with Distributed Data
-
Estimating Network-Mediated Causal Effects via Principal Components Network Regression
Alex Hayes, Mark M. Fredrickson, Keith Levin (13):1−99, 2025 codePDF BibTeX
-
Locally Private Causal Inference for Randomized Experiments
-
From Sparse to Dense Functional Data in High Dimensions: Revisiting Phase Transitions from a Non-Asymptotic Perspective
Shaojun Guo, Dong Li, Xinghao Qiao, Yizhu Wang (15):1−40, 2025 PDF BibTeX
-
Error estimation and adaptive tuning for unregularized robust M-estimator
Pierre C. Bellec, Takuya Koriyama (16):1−40, 2025 PDF BibTeX
-
Supervised Learning with Evolving Tasks and Performance Guarantees
Verónica Álvarez, Santiago Mazuelas, Jose A. Lozano (17):1−59, 2025 codePDF BibTeX
-
Riemannian Bilevel Optimization
-
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi, Pakshal Bohra, Ayoub El Biari, Mehrsa Pourya, Michael Unser (19):1−31, 2025 PDF BibTeX
-
Regularizing Hard Examples Improves Adversarial Robustness
Hyungyu Lee, Saehyung Lee, Ho Bae, Sungroh Yoon (20):1−48, 2025 PDF BibTeX
-
Bayesian Sparse Gaussian Mixture Model for Clustering in High Dimensions
Dapeng Yao, Fangzheng Xie, Yanxun Xu (21):1−50, 2025 PDF BibTeX
-
Directed Cyclic Graphs for Simultaneous Discovery of Time-Lagged and Instantaneous Causality from Longitudinal Data Using Instrumental Variables
Wei Jin, Yang Ni, Amanda B. Spence, Leah H. Rubin, Yanxun Xu (22):1−62, 2025 codePDF BibTeX
-
Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick
Xiyuan Wang, Pan Li, Muhan Zhang (23):1−44, 2025 codePDF BibTeX
-
The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
Shuze Daniel Liu, Shuhang Chen, Shangtong Zhang (24):1−76, 2025 PDF BibTeX
-
depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers
Kaichao You, Runsheng Bai, Meng Cao, Jianmin Wang, Ion Stoica, Mingsheng Long (25):1−18, 2025 codePDF BibTeX
-
The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond
Jiin Woo, Gauri Joshi, Yuejie Chi (26):1−85, 2025 PDF BibTeX
-
Mean Aggregator is More Robust than Robust Aggregators under Label Poisoning Attacks on Distributed Heterogeneous Data
Jie Peng, Weiyu Li, Stefan Vlaski, Qing Ling (27):1−51, 2025 codePDF BibTeX
-
Optimal Experiment Design for Causal Effect Identification
Sina Akbari, Jalal Etesami, Negar Kiyavash (28):1−56, 2025 codePDF BibTeX
-
Orthogonal Bases for Equivariant Graph Learning with Provable k-WL Expressive Power
-
Bayesian Multi-Group Gaussian Process Models for Heterogeneous Group-Structured Data
Didong Li, Andrew Jones, Sudipto Banerjee, Barbara E. Engelhardt (30):1−34, 2025 codePDF BibTeX
-
Accelerating optimization over the space of probability measures
Shi Chen, Qin Li, Oliver Tse, Stephen J. Wright (31):1−40, 2025 PDF BibTeX
-
Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds
Clément Bonet, Lucas Drumetz, Nicolas Courty (32):1−76, 2025 codePDF BibTeX
-
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
-
gsplat: An Open-Source Library for Gaussian Splatting
Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey Hu, Matthew Tancik, Angjoo Kanazawa (34):1−17, 2025 codePDF BibTeX
-
Rank-one Convexification for Sparse Regression
-
Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding
Jiajing Zheng, Alexander D'Amour, Alexander Franks (36):1−60, 2025 codePDF BibTeX
-
Unbalanced Kantorovich-Rubinstein distance, plan, and barycenter on nite spaces: A statistical perspective
Shayan Hundrieser, Florian Heinemann, Marcel Klatt, Marina Struleva, Axel Munk (37):1−70, 2025 PDF BibTeX
-
Optimizing Data Collection for Machine Learning
Rafid Mahmood, James Lucas, Jose M. Alvarez, Sanja Fidler, Marc T. Law (38):1−52, 2025 PDF BibTeX
-
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuangyu Ding, Jingyang Li, Kim-Chuan Toh (39):1−44, 2025 PDF BibTeX
-
Efficient and Robust Semi-supervised Estimation of Average Treatment Effect with Partially Annotated Treatment and Response
Jue Hou, Rajarshi Mukherjee, Tianxi Cai (40):1−77, 2025 codePDF BibTeX
-
On the Approximation of Kernel functions
-
Extremal graphical modeling with latent variables via convex optimization
Sebastian Engelke, Armeen Taeb (42):1−68, 2025 codePDF BibTeX
-
Wasserstein Convergence Guarantees for a General Class of Score-Based Generative Models
Xuefeng Gao, Hoang M. Nguyen, Lingjiong Zhu (43):1−54, 2025 PDF BibTeX
-
Learning Global Nash Equilibrium in Team Competitive Games with Generalized Fictitious Cross-Play
Zelai Xu, Chao Yu, Yancheng Liang, Yi Wu, Yu Wang (44):1−30, 2025 PDF BibTeX
-
Manifold Fitting under Unbounded Noise
-
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu, Haowei Wang, Zhongxiang Dai, Bryan Kian Hsiang Low, Szu Hui Ng (46):1−33, 2025 PDF BibTeX
-
DAGs as Minimal I-maps for the Induced Models of Causal Bayesian Networks under Conditioning
Xiangdong Xie, Jiahua Guo, Yi Sun (47):1−62, 2025 codePDF BibTeX
-
Efficient and Robust Transfer Learning of Optimal Individualized Treatment Regimes with Right-Censored Survival Data
Pan Zhao, Julie Josse, Shu Yang (48):1−54, 2025 codePDF BibTeX
-
The Effect of SGD Batch Size on Autoencoder Learning: Sparsity, Sharpness, and Feature Learning
Nikhil Ghosh, Spencer Frei, Wooseok Ha, Bin Yu (49):1−61, 2025 PDF BibTeX
-
PFLlib: A Beginner-Friendly and Comprehensive Personalized Federated Learning Library and Benchmark
Jianqing Zhang, Yang Liu, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, Jian Cao (50):1−10, 2025 codePDF BibTeX
-
Composite Goodness-of-fit Tests with Kernels
Oscar Key, Arthur Gretton, François-Xavier Briol, Tamara Fernandez (51):1−60, 2025 codePDF BibTeX
-
Curvature-based Clustering on Graphs
Yu Tian, Zachary Lubberts, Melanie Weber (52):1−67, 2025 PDF BibTeX
-
Scaling Data-Constrained Language Models
Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, Colin Raffel (53):1−66, 2025 codePDF BibTeX
-
Lightning UQ Box: Uncertainty Quantification for Neural Networks
Nils Lehmann, Nina Maria Gottschling, Jakob Gawlikowski, Adam J. Stewart, Stefan Depeweg, Eric Nalisnick (54):1−7, 2025 codePDF BibTeX
-
A Comparative Evaluation of Quantification Methods
Tobias Schumacher, Markus Strohmaier, Florian Lemmerich (55):1−54, 2025 codePDF BibTeX
-
Scaling ResNets in the Large-depth Regime
Pierre Marion, Adeline Fermanian, Gérard Biau, Jean-Philippe Vert (56):1−48, 2025 codePDF BibTeX
-
Variance-Aware Estimation of Kernel Mean Embedding
-
Determine the Number of States in Hidden Markov Models via Marginal Likelihood
Yang Chen, Cheng-Der Fuh, Chu-Lan Michael Kao (58):1−59, 2025 PDF BibTeX
-
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni, Nicklas Werge (59):1−49, 2025 PDF BibTeX
-
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, Narges Ahmidi (60):1−84, 2025 PDF BibTeX
-
Recursive Causal Discovery
Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash (61):1−65, 2025 codePDF BibTeX
-
Continuously evolving rewards in an open-ended environment
-
Ontolearn---A Framework for Large-scale OWL Class Expression Learning in Python
Caglar Demir, Alkid Baci, N'Dah Jean Kouagou, Leonie Nora Sieger, Stefan Heindorf, Simon Bin, Lukas Blübaum, Alexander Bigerl, Axel-Cyrille Ngonga Ngomo (63):1−6, 2025 codePDF BibTeX
-
Estimation of Local Geometric Structure on Manifolds from Noisy Data
-
Instability, Computational Efficiency and Statistical Accuracy
Nhat Ho, Koulik Khamaru, Raaz Dwivedi, Martin J. Wainwright, Michael I. Jordan, Bin Yu (65):1−68, 2025 PDF BibTeX
-
Deletion Robust Non-Monotone Submodular Maximization over Matroids
Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam (66):1−28, 2025 PDF BibTeX
-
Fine-Grained Change Point Detection for Topic Modeling with Pitman-Yor Process
Feifei Wang, Zimeng Zhao, Ruimin Ye, Xiaoge Gu, Xiaoling Lu (67):1−53, 2025 PDF BibTeX
-
Stabilizing Sharpness-Aware Minimization Through A Simple Renormalization Strategy
Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, Yunda Hao (68):1−35, 2025 PDF BibTeX
-
Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization
Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang, Zhiwei Bai (69):1−30, 2025 PDF BibTeX
-
Sharp Bounds for Sequential Federated Learning on Heterogeneous Data
-
Sampling and Estimation on Manifolds using the Langevin Diffusion
Karthik Bharath, Alexander Lewis, Akash Sharma, Michael V. Tretyakov (71):1−50, 2025 PDF BibTeX
-
Laplace Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace's Method
Ryan J. Tibshirani, Samy Wu Fung, Howard Heaton, Stanley Osher (72):1−36, 2025 codePDF BibTeX
-
Optimization Over a Probability Simplex
James Chok, Geoffrey M. Vasil (73):1−35, 2025 codePDF BibTeX
-
On Consistent Bayesian Inference from Synthetic Data
Ossi Räisä, Joonas Jälkö, Antti Honkela (74):1−65, 2025 codePDF BibTeX
-
Learning causal graphs via nonlinear sufficient dimension reduction
Eftychia Solea, Bing Li, Kyongwon Kim (75):1−46, 2025 PDF BibTeX
-
Distributed Stochastic Bilevel Optimization: Improved Complexity and Heterogeneity Analysis
Youcheng Niu, Jinming Xu, Ying Sun, Yan Huang, Li Chai (76):1−58, 2025 PDF BibTeX
-
Wasserstein F-tests for Frechet regression on Bures-Wasserstein manifolds
-
Derivative-Informed Neural Operator Acceleration of Geometric MCMC for Infinite-Dimensional Bayesian Inverse Problems
Lianghao Cao, Thomas O'Leary-Roseberry, Omar Ghattas (78):1−68, 2025 codePDF BibTeX
-
Dynamic angular synchronization under smoothness constraints
Ernesto Araya, Mihai Cucuringu, Hemant Tyagi (79):1−45, 2025 codePDF BibTeX
-
GraphNeuralNetworks.jl: Deep Learning on Graphs with Julia