JMLR Volume 18
-
Averaged Collapsed Variational Bayes Inference
Katsuhiko Ishiguro, Issei Sato, Naonori Ueda (1):1−29, 2017 PDF BibTeX
-
Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks
Nan Du, Yingyu Liang, Maria-Florina Balcan, Manuel Gomez-Rodriguez, Hongyuan Zha, Le Song (2):1−45, 2017 PDF BibTeX
-
Local algorithms for interactive clustering
Pranjal Awasthi, Maria Florina Balcan, Konstantin Voevodski (3):1−35, 2017 PDF BibTeX
-
SnapVX: A Network-Based Convex Optimization Solver
David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosič, Stephen Boyd, Jure Leskovec (4):1−5, 2017 codestanford.eduPDF BibTeX
-
Communication-efficient Sparse Regression
Jason D. Lee, Qiang Liu, Yuekai Sun, Jonathan E. Taylor (5):1−30, 2017 PDF BibTeX
-
Improving Variational Methods via Pairwise Linear Response Identities
Jack Raymond, Federico Ricci-Tersenghi (6):1−36, 2017 PDF BibTeX
-
Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks
Adam S. Charles, Dong Yin, Christopher J. Rozell (7):1−37, 2017 PDF BibTeX
-
Persistence Images: A Stable Vector Representation of Persistent Homology
Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, Lori Ziegelmeier (8):1−35, 2017 erratumPDF BibTeX
-
Spectral Clustering Based on Local PCA
Ery Arias-Castro, Gilad Lerman, Teng Zhang (9):1−57, 2017 PDF BibTeX
-
On Perturbed Proximal Gradient Algorithms
Yves F. Atchadé, Gersende Fort, Eric Moulines (10):1−33, 2017 PDF BibTeX
-
Differential Privacy for Bayesian Inference through Posterior Sampling
Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikaterini Mitrokotsa, Benjamin I. P. Rubinstein (11):1−39, 2017 PDF BibTeX
-
Refinery: An Open Source Topic Modeling Web Platform
Daeil Kim, Benjamin F. Swanson, Michael C. Hughes, Erik B. Sudderth (12):1−5, 2017 codewebpagePDF BibTeX
-
Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns
Herbert Jaeger (13):1−43, 2017 supplementaryPDF BibTeX
-
Automatic Differentiation Variational Inference
Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei (14):1−45, 2017 PDF BibTeX
-
Empirical Evaluation of Resampling Procedures for Optimising SVM Hyperparameters
-
A Unified Formulation and Fast Accelerated Proximal Gradient Method for Classification
Naoki Ito, Akiko Takeda, Kim-Chuan Toh (16):1−49, 2017 PDF BibTeX
-
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
Guillaume Lemaître, Fernando Nogueira, Christos K. Aridas (17):1−5, 2017 codewebpagePDF BibTeX
-
Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles
Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen (18):1−65, 2017 PDF BibTeX
-
Breaking the Curse of Dimensionality with Convex Neural Networks
-
Memory Efficient Kernel Approximation
Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon (20):1−32, 2017 PDF BibTeX
-
On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
-
Analyzing Tensor Power Method Dynamics in Overcomplete Regime
Animashree An, kumar, Rong Ge, Majid Janzamin (22):1−40, 2017 PDF BibTeX
-
JSAT: Java Statistical Analysis Tool, a Library for Machine Learning
-
Identifying a Minimal Class of Models for High--dimensional Data
-
Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown (25):1−5, 2017 codewebpagePDF BibTeX
-
POMDPs.jl: A Framework for Sequential Decision Making under Uncertainty
Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta, Mykel J. Kochenderfer (26):1−5, 2017 codewebpagePDF BibTeX
-
Generalized P{\'o}lya Urn for Time-Varying Pitman-Yor Processes
François Caron, Willie Neiswanger, Frank Wood, Arnaud Doucet, Manuel Davy (27):1−32, 2017 PDF BibTeX
-
Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models
Alexandre Bouchard-Côté, Arnaud Doucet, Andrew Roth (28):1−39, 2017 PDF BibTeX
-
Certifiably Optimal Low Rank Factor Analysis
Dimitris Bertsimas, Martin S. Copenhaver, Rahul Mazumder (29):1−53, 2017 PDF BibTeX
-
Group Sparse Optimization via lp,q Regularization
Yaohua Hu, Chong Li, Kaiwen Meng, Jing Qin, Xiaoqi Yang (30):1−52, 2017 PDF BibTeX
-
Preference-based Teaching
Ziyuan Gao, Christoph Ries, Hans U. Simon, S, ra Zilles (31):1−32, 2017 PDF BibTeX
-
Nonparametric Risk Bounds for Time-Series Forecasting
Daniel J. McDonald, Cosma Rohilla Shalizi, Mark Schervish (32):1−40, 2017 PDF BibTeX
-
Online Bayesian Passive-Aggressive Learning
-
Asymptotic Analysis of Objectives Based on Fisher Information in Active Learning
Jamshid Sourati, Murat Akcakaya, Todd K. Leen, Deniz Erdogmus, Jennifer G. Dy (34):1−41, 2017 PDF BibTeX
-
A Spectral Algorithm for Inference in Hidden semi-Markov Models
-
Simplifying Probabilistic Expressions in Causal Inference
-
Nearly optimal classification for semimetrics
Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch (37):1−22, 2017 PDF BibTeX
-
Bridging Supervised Learning and Test-Based Co-optimization
-
GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis
Eemeli Leppäaho, Muhammad Ammad-ud-din, Samuel Kaski (39):1−5, 2017 coder-project.orgPDF BibTeX
-
GPflow: A Gaussian Process Library using TensorFlow
Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo Le{\'o}n-Villagr{\'a}, Zoubin Ghahramani, James Hensman (40):1−6, 2017 codewebpagePDF BibTeX
-
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Evolution
Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, Le Song (41):1−49, 2017 PDF BibTeX
-
Learning Local Dependence In Ordered Data
-
Bayesian Learning of Dynamic Multilayer Networks
Daniele Durante, Nabanita Mukherjee, Rebecca C. Steorts (43):1−29, 2017 PDF BibTeX
-
Time-Accuracy Tradeoffs in Kernel Prediction: Controlling Prediction Quality
-
Asymptotic behavior of Support Vector Machine for spiked population model
-
Distributed Semi-supervised Learning with Kernel Ridge Regression
Xiangyu Chang, Shao-Bo Lin, Ding-Xuan Zhou (46):1−22, 2017 PDF BibTeX
-
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet, Arnaud Doucet, Chris Holmes (47):1−43, 2017 PDF BibTeX
-
Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers
Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease (48):1−33, 2017 PDF BibTeX
-
Clustering from General Pairwise Observations with Applications to Time-varying Graphs
Shiau Hong Lim, Yudong Chen, Huan Xu (49):1−47, 2017 PDF BibTeX
-
Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques
Debarghya Ghoshdastidar, Ambedkar Dukkipati (50):1−41, 2017 PDF BibTeX
-
Reconstructing Undirected Graphs from Eigenspaces
Yohann De Castro, Thibault Espinasse, Paul Rochet (51):1−24, 2017 PDF BibTeX
-
An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback
-
Perishability of Data: Dynamic Pricing under Varying-Coefficient Models
-
Two New Approaches to Compressed Sensing Exhibiting Both Robust Sparse Recovery and the Grouping Effect
Mehmet Eren Ahsen, Niharika Challapalli, Mathukumalli Vidyasagar (54):1−24, 2017 PDF BibTeX
-
On the Consistency of Ordinal Regression Methods
Fabian Pedregosa, Francis Bach, Alexandre Gramfort (55):1−35, 2017 PDF BibTeX
-
Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences
Takashi Takenouchi, Takafumi Kanamori (56):1−26, 2017 PDF BibTeX
-
Density Estimation in Infinite Dimensional Exponential Families
Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyv\"{a}rinen, Revant Kumar (57):1−59, 2017 PDF BibTeX
-
Lens Depth Function and k-Relative Neighborhood Graph: Versatile Tools for Ordinal Data Analysis
Matthäus Kleindessner, Ulrike von Luxburg (58):1−52, 2017 PDF BibTeX
-
Joint Label Inference in Networks
Deepayan Chakrabarti, Stanislav Funiak, Jonathan Chang, Sofus A. Macskassy (59):1−39, 2017 PDF BibTeX
-
Achieving Optimal Misclassification Proportion in Stochastic Block Models
Chao Gao, Zongming Ma, Anderson Y. Zhang, Harrison H. Zhou (60):1−45, 2017 PDF BibTeX
-
On the Propagation of Low-Rate Measurement Error to Subgraph Counts in Large Networks
Prakash Balach, ran, Eric D. Kolaczyk, Weston D. Viles (61):1−33, 2017 PDF BibTeX
-
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Yannis Papanikolaou, James R. Foulds, Timothy N. Rubin, Grigorios Tsoumakas (62):1−58, 2017 PDF BibTeX
-
Fundamental Conditions for Low-CP-Rank Tensor Completion
Morteza Ashraphijuo, Xiaodong Wang (63):1−29, 2017 PDF BibTeX
-
Parallel Symmetric Class Expression Learning
An C. Tran, Jens Dietrich, Hans W. Guesgen, Stephen Marsl, (64):1−34, 2017 PDF BibTeX
-
Learning Partial Policies to Speedup MDP Tree Search via Reduction to I.I.D. Learning
-
Hierarchically Compositional Kernels for Scalable Nonparametric Learning
Jie Chen, Haim Avron, Vikas Sindhwani (66):1−42, 2017 PDF BibTeX
-
Sharp Oracle Inequalities for Square Root Regularization
Benjamin Stucky, Sara van de Geer (67):1−29, 2017 PDF BibTeX
-
Soft Margin Support Vector Classification as Buffered Probability Minimization
Matthew Norton, Alexander Mafusalov, Stan Uryasev (68):1−43, 2017 PDF BibTeX
-
Variational Particle Approximations
Ardavan Saeedi, Tejas D. Kulkarni, Vikash K. Mansinghka, Samuel J. Gershman (69):1−29, 2017 PDF BibTeX
-
A Bayesian Framework for Learning Rule Sets for Interpretable Classification
Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, Perry MacNeille (70):1−37, 2017 PDF BibTeX
-
A Robust-Equitable Measure for Feature Ranking and Selection
A. Adam Ding, Jennifer G. Dy, Yi Li, Yale Chang (71):1−46, 2017 PDF BibTeX
-
Multiscale Strategies for Computing Optimal Transport
-
Non-parametric Policy Search with Limited Information Loss
Herke van Hoof, Gerhard Neumann, Jan Peters (73):1−46, 2017 PDF BibTeX
-
Tests of Mutual or Serial Independence of Random Vectors with Applications
Martin Bilodeau, Aurélien Guetsop Nangue (74):1−40, 2017 supplementaryPDF BibTeX
-
Recovering PCA and Sparse PCA via Hybrid-(l1,l2) Sparse Sampling of Data Elements
Abhisek Kundu, Petros Drineas, Malik Magdon-Ismail (75):1−34, 2017 PDF BibTeX
-
Quantifying the Informativeness of Similarity Measurements
Austin J. Brockmeier, Tingting Mu, Sophia Ananiadou, John Y. Goulermas (76):1−61, 2017 PDF BibTeX
-
Time for a Change: a Tutorial for Comparing Multiple Classifiers Through Bayesian Analysis
Alessio Benavoli, Giorgio Corani, Janez Demšar, Marco Zaffalon (77):1−36, 2017 PDF BibTeX
-
Relational Reinforcement Learning for Planning with Exogenous Effects
David Mart\'{i}nez, Guillem Aleny\`{a}, Tony Ribeiro, Katsumi Inoue, Carme Torras (78):1−44, 2017 PDF BibTeX
-
Bayesian Tensor Regression
Rajarshi Guhaniyogi, Shaan Qamar, David B. Dunson (79):1−31, 2017 PDF BibTeX
-
Robust Discriminative Clustering with Sparse Regularizers
Nicolas Flammarion, Balamurugan Palaniappan, Francis Bach (80):1−50, 2017 PDF BibTeX
-
Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions
-
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, Eric P. Xing (82):1−37, 2017 PDF BibTeX
-
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Vardan Papyan, Yaniv Romano, Michael Elad (83):1−52, 2017 PDF BibTeX
-
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
-
Angle-based Multicategory Distance-weighted SVM
Hui Sun, Bruce A. Craig, Lingsong Zhang (85):1−21, 2017 PDF BibTeX
-
Minimax Estimation of Kernel Mean Embeddings
Ilya Tolstikhin, Bharath K. Sriperumbudur, Krikamol Mu, et (86):1−47, 2017 PDF BibTeX
-
The Impact of Random Models on Clustering Similarity
Alexander J. Gates, Yong-Yeol Ahn (87):1−28, 2017 PDF BibTeX
-
Hierarchical Clustering via Spreading Metrics
-
The MADP Toolbox: An Open Source Library for Planning and Learning in (Multi-)Agent Systems
Frans A. Oliehoek, Matthijs T. J. Spaan, Bas Terwijn, Philipp Robbel, Jo\~{a}o V. Messias (89):1−5, 2017 codePDF BibTeX
-
A survey of Algorithms and Analysis for Adaptive Online Learning
-
A distributed block coordinate descent method for training l1 regularized linear classifiers
Dhruv Mahajan, S. Sathiya Keerthi, S. Sundararajan (91):1−35, 2017 PDF BibTeX
-
Distributed Learning with Regularized Least Squares
Shao-Bo Lin, Xin Guo, Ding-Xuan Zhou (92):1−31, 2017 PDF BibTeX
-
Identifying Unreliable and Adversarial Workers in Crowdsourced Labeling Tasks
Srikanth Jagabathula, Lakshminarayanan Subramanian, Ashwin Venkataraman (93):1−67, 2017 PDF BibTeX
-
An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels
Weiwei Liu, Ivor W. Tsang, Klaus-Robert M\"{u}ller (94):1−38, 2017 PDF BibTeX
-
Fisher Consistency for Prior Probability Shift
-
openXBOW -- Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit
Maximilian Schmitt, Björn Schuller (96):1−5, 2017 codePDF BibTeX
-
Optimal Rates for Multi-pass Stochastic Gradient Methods
-
Rank Determination for Low-Rank Data Completion
Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal (98):1−29, 2017 PDF BibTeX
-
Bayesian Network Learning via Topological Order
-
Stability of Controllers for Gaussian Process Dynamics
Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Jan Peters (100):1−37, 2017 PDF BibTeX
-
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut, Nicolas Flammarion, Francis Bach (101):1−51, 2017 PDF BibTeX
-
Confidence Sets with Expected Sizes for Multiclass Classification
Christophe Denis, Mohamed Hebiri (102):1−28, 2017 PDF BibTeX
-
Online Learning to Rank with Top-k Feedback
-
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
Thang D. Bui, Josiah Yan, Richard E. Turner (104):1−72, 2017 PDF BibTeX
-
Accelerating Stochastic Composition Optimization
Mengdi Wang, Ji Liu, Ethan X. Fang (105):1−23, 2017 PDF BibTeX
-
Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh (106):1−37, 2017 PDF BibTeX
-
Optimal Dictionary for Least Squares Representation
Mohammed Rayyan Sheriff, Debasish Chatterjee (107):1−28, 2017 PDF BibTeX
-
Computational Limits of A Distributed Algorithm for Smoothing Spline
-
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Stephen H. Bach, Matthias Broecheler, Bert Huang, Lise Getoor (109):1−67, 2017 PDF BibTeX
-
Clustering with Hidden Markov Model on Variable Blocks
-
Approximation Vector Machines for Large-scale Online Learning
Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Phung (111):1−55, 2017 PDF BibTeX
-
Efficient Sampling from Time-Varying Log-Concave Distributions
Hariharan Narayanan, Alexer Rakhlin (112):1−29, 2017 PDF BibTeX
-
Document Neural Autoregressive Distribution Estimation
Stanislas Lauly, Yin Zheng, Alex, re Allauzen, Hugo Larochelle (113):1−24, 2017 PDF BibTeX
-
Target Curricula via Selection of Minimum Feature Sets: a Case Study in Boolean Networks
-
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng, Jialei Wang, Fen Xia, Wei Xu, Tong Zhang (115):1−52, 2017 PDF BibTeX
-
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal, Brian Bullins, Elad Hazan (116):1−40, 2017 erratumPDF BibTeX
-
Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models
-
Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network
Zheng-Chu Guo, Lei Shi, Qiang Wu (118):1−25, 2017 PDF BibTeX
-
Probabilistic Line Searches for Stochastic Optimization
-
Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions
-
Classification of Time Sequences using Graphs of Temporal Constraints
Mathieu Guillame-Bert, Artur Dubrawski (121):1−34, 2017 PDF BibTeX
-
Distributed Stochastic Variance Reduced Gradient Methods by Sampling Extra Data with Replacement
Jason D. Lee, Qihang Lin, Tengyu Ma, Tianbao Yang (122):1−43, 2017 PDF BibTeX
-
Kernel Partial Least Squares for Stationary Data
Marco Singer, Tatyana Krivobokova, Axel Munk (123):1−41, 2017 PDF BibTeX
-
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, David B. Dunson (124):1−40, 2017 PDF BibTeX
-
Statistical and Computational Guarantees for the Baum-Welch Algorithm
Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright (125):1−53, 2017 PDF BibTeX
-
Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling
-
Poisson Random Fields for Dynamic Feature Models
Valerio Perrone, Paul A. Jenkins, Dario Spanò, Yee Whye Teh (127):1−45, 2017 PDF BibTeX
-
Gap Safe Screening Rules for Sparsity Enforcing Penalties
Eugene Ndiaye, Olivier Fercoq, Alex, re Gramfort, Joseph Salmon (128):1−33, 2017 PDF BibTeX
-
Minimax Filter: Learning to Preserve Privacy from Inference Attacks
-
Knowledge Graph Completion via Complex Tensor Factorization
Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, Guillaume Bouchard (130):1−38, 2017 PDF BibTeX
-
Stabilized Sparse Online Learning for Sparse Data
-
Active-set Methods for Submodular Minimization Problems
-
A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations
Jean-Baptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, Stanley Durrleman (133):1−33, 2017 PDF BibTeX
-
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan M, t, Matthew D. Hoffman, David M. Blei (134):1−35, 2017 PDF BibTeX
-
STORE: Sparse Tensor Response Regression and Neuroimaging Analysis
-
A Survey of Preference-Based Reinforcement Learning Methods
Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz (136):1−46, 2017 PDF BibTeX
-
Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising
Jérémie Bigot, Charles Deledalle, Delphine Féral (137):1−50, 2017 PDF BibTeX
-
Dimension Estimation Using Random Connection Models
-
Bayesian Inference for Spatio-temporal Spike-and-Slab Priors
Michael Riis Andersen, Aki Vehtari, Ole Winther, Lars Kai Hansen (139):1−58, 2017 PDF BibTeX
-
Adaptive Randomized Dimension Reduction on Massive Data
Gregory Darnell, Stoyan Georgiev, Sayan Mukherjee, Barbara E Engelhardt (140):1−30, 2017 PDF BibTeX
-
A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms
Huishuai Zhang, Yingbin Liang, Yuejie Chi (141):1−35, 2017 PDF BibTeX
-
Consistency, Breakdown Robustness, and Algorithms for Robust Improper Maximum Likelihood Clustering
Pietro Coretto, Christian Hennig (142):1−39, 2017 PDF BibTeX
-
On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models
Yining Wang, Adams Wei Yu, Aarti Singh (143):1−41, 2017 PDF BibTeX
-
Generalized Conditional Gradient for Sparse Estimation
Yaoliang Yu, Xinhua Zhang, Dale Schuurmans (144):1−46, 2017 PDF BibTeX
-
Following the Leader and Fast Rates in Online Linear Prediction: Curved Constraint Sets and Other Regularities
Ruitong Huang, Tor Lattimore, András György, Csaba Szepesvári (145):1−31, 2017 PDF BibTeX
-
Regularization and the small-ball method II: complexity dependent error rates
Guillaume Lecué, Shahar Mendelson (146):1−48, 2017 PDF BibTeX
-
Matrix Completion with Noisy Entries and Outliers
Raymond K. W. Wong, Thomas C. M. Lee (147):1−25, 2017 PDF BibTeX
-
Faithfulness of Probability Distributions and Graphs
-
Community Extraction in Multilayer Networks with Heterogeneous Community Structure
James D. Wilson, John Palowitch, Shankar Bhamidi, Andrew B. Nobel (149):1−49, 2017 PDF BibTeX
-
On Binary Embedding using Circulant Matrices
Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang (150):1−30, 2018 PDF BibTeX
-
Variational Fourier Features for Gaussian Processes
James Hensman, Nicolas Durrande, Arno Solin (151):1−52, 2018 PDF BibTeX
-
HyperTools: a Python Toolbox for Gaining Geometric Insights into High-Dimensional Data
Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning (152):1−6, 2018 codewebpagePDF BibTeX
-
Automatic Differentiation in Machine Learning: a Survey
Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind (153):1−43, 2018 PDF BibTeX
-
Normal Bandits of Unknown Means and Variances
Wesley Cowan, Junya Honda, Michael N. Katehakis (154):1−28, 2018 PDF BibTeX
-
Cost-Sensitive Learning with Noisy Labels
Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari (155):1−33, 2018 PDF BibTeX
-
Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data
-
A Study of the Classification of Low-Dimensional Data with Supervised Manifold Learning
-
Probabilistic preference learning with the Mallows rank model
Valeria Vitelli, Øystein Sørensen, Marta Crispino, Arnoldo Frigessi, Elja Arjas (158):1−49, 2018 PDF BibTeX
-
Robust Topological Inference: Distance To a Measure and Kernel Distance
Fr{\'e}d{\'e}ric Chazal, Brittany Fasy, Fabrizio Lecci, Bertr, Michel, Aless, ro Rinaldo, Larry Wasserman (159):1−40, 2018 PDF BibTeX
-
Training Gaussian Mixture Models at Scale via Coresets
Mario Lucic, Matthew Faulkner, Andreas Krause, Dan Feldman (160):1−25, 2018 PDF BibTeX
-
Gradient Estimation with Simultaneous Perturbation and Compressive Sensing
Vivek S. Borkar, Vikranth R. Dwaracherla, Neeraja Sahasrabudhe (161):1−27, 2018 PDF BibTeX
-
Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model
-
Deep Learning the Ising Model Near Criticality
Alan Morningstar, Roger G. Melko (163):1−17, 2018 PDF BibTeX
-
pomegranate: Fast and Flexible Probabilistic Modeling in Python
-
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li, Long Chen, Cheng Tai, Weinan E (165):1−29, 2018 PDF BibTeX
-
Gradient Hard Thresholding Pursuit
Xiao-Tong Yuan, Ping Li, Tong Zhang (166):1−43, 2018 PDF BibTeX
-
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, Marco Pavone (167):1−51, 2018 PDF BibTeX
-
Local Identifiability of $\ell_1$-minimization Dictionary Learning: a Sufficient and Almost Necessary Condition
-
In Search of Coherence and Consensus: Measuring the Interpretability of Statistical Topics
-
On the Behavior of Intrinsically High-Dimensional Spaces: Distances, Direct and Reverse Nearest Neighbors, and Hubness
-
Convergence of Unregularized Online Learning Algorithms
Yunwen Lei, Lei Shi, Zheng-Chu Guo (171):1−33, 2018 PDF BibTeX
-
Convergence Analysis of Distributed Inference with Vector-Valued Gaussian Belief Propagation
Jian Du, Shaodan Ma, Yik-Chung Wu, Soummya Kar, José M. F. Moura (172):1−38, 2018 PDF BibTeX
-
auDeep: Unsupervised Learning of Representations from Audio with Deep Recurrent Neural Networks
Michael Freitag, Shahin Amiriparian, Sergey Pugachevskiy, Nicholas Cummins, Bj\"{o}rn Schuller (173):1−5, 2018 PDF BibTeX
-
On the Stability of Feature Selection Algorithms
Sarah Nogueira, Konstantinos Sechidis, Gavin Brown (174):1−54, 2018 PDF BibTeX
-
Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard
Christopher Tosh, Sanjoy Dasgupta (175):1−11, 2018 PDF BibTeX
-
The DFS Fused Lasso: Linear-Time Denoising over General Graphs
Oscar Hernan Madrid Padilla, James Sharpnack, James G. Scott, Ryan J. Tibshirani (176):1−36, 2018 PDF BibTeX
-
Community Detection and Stochastic Block Models: Recent Developments
-
On $b$-bit Min-wise Hashing for Large-scale Regression and Classification with Sparse Data
Rajen D. Shah, Nicolai Meinshausen (178):1−42, 2018 PDF BibTeX
-
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity
-
Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios
Hiroaki Sasaki, Takafumi Kanamori, Aapo Hyvärinen, Gang Niu, Masashi Sugiyama (180):1−47, 2018 PDF BibTeX
-
To Tune or Not to Tune the Number of Trees in Random Forest
Philipp Probst, Anne-Laure Boulesteix (181):1−18, 2018 PDF BibTeX
-
Divide-and-Conquer for Debiased $l_1$-norm Support Vector Machine in Ultra-high Dimensions
-
Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits
-
On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization
Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong (184):1−24, 2018 PDF BibTeX
-
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar (185):1−52, 2018 PDF BibTeX
-
Submatrix localization via message passing
Bruce Hajek, Yihong Wu, Jiaming Xu (186):1−52, 2018 PDF BibTeX
-
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio (187):1−30, 2018 PDF BibTeX
-
Significance-based community detection in weighted networks
John Palowitch, Shankar Bhamidi, Andrew B. Nobel (188):1−48, 2018 PDF BibTeX
-
Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor
Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka (189):1−41, 2018 PDF BibTeX
-
Pycobra: A Python Toolbox for Ensemble Learning and Visualisation
Benjamin Guedj, Bhargav Srinivasa Desikan (190):1−5, 2018 codewebpagePDF BibTeX
-
KELP: a Kernel-based Learning Platform
Simone Filice, Giuseppe Castellucci, Giovanni Da San Martino, Aless, ro Moschitti, Danilo Croce, Roberto Basili (191):1−5, 2018 codewebpagePDF BibTeX
-
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
Massil Achab, Emmanuel Bacry, Stéphane Gaïffas, Iacopo Mastromatteo, Jean-François Muzy (192):1−28, 2018 PDF BibTeX
-
Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research
-
Enhancing Identification of Causal Effects by Pruning
-
Active Nearest-Neighbor Learning in Metric Spaces
Aryeh Kontorovich, Sivan Sabato, Ruth Urner (195):1−38, 2018 PDF BibTeX
-
From Predictive Methods to Missing Data Imputation: An Optimization Approach
Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo (196):1−39, 2018 PDF BibTeX
-
Saturating Splines and Feature Selection
Nicholas Boyd, Trevor Hastie, Stephen Boyd, Benjamin Recht, Michael I. Jordan (197):1−32, 2018 PDF BibTeX
-
Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization
-
Simple, Robust and Optimal Ranking from Pairwise Comparisons
Nihar B. Shah, Martin J. Wainwright (199):1−38, 2018 PDF BibTeX
-
Surprising properties of dropout in deep networks
David P. Helmbold, Philip M. Long (200):1−28, 2018 PDF BibTeX
-
Exact Learning of Lightweight Description Logic Ontologies
Boris Konev, Carsten Lutz, Ana Ozaki, Frank Wolter (201):1−63, 2018 PDF BibTeX
-
Sparse Concordance-assisted Learning for Optimal Treatment Decision
Shuhan Liang, Wenbin Lu, Rui Song, Lan Wang (202):1−26, 2018 PDF BibTeX
-
Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models
Junwei Lu, Mladen Kolar, Han Liu (203):1−78, 2018 PDF BibTeX
-
Permuted and Augmented Stick-Breaking Bayesian Multinomial Regression
-
Steering Social Activity: A Stochastic Optimal Control Point Of View
Ali Zarezade, Abir De, Utkarsh Upadhyay, Hamid R. Rabiee, Manuel Gomez-Rodriguez (205):1−35, 2018 PDF BibTeX
-
The Search Problem in Mixture Models
Avik Ray, Joe Neeman, Sujay Sanghavi, Sanjay Shakkottai (206):1−61, 2018 PDF BibTeX
-
An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application
Jianqing Fan, Weichen Wang, Yiqiao Zhong (207):1−42, 2018 PDF BibTeX
-
A Tight Bound of Hard Thresholding
-
Estimation of Graphical Models through Structured Norm Minimization
Davoud Ataee Tarzanagh, George Michailidis (209):1−48, 2018 PDF BibTeX
-
Sparse Exchangeable Graphs and Their Limits via Graphon Processes
Christian Borgs, Jennifer T. Chayes, Henry Cohn, Nina Holden (210):1−71, 2018 PDF BibTeX
-
Weighted SGD for $\ell_p$ Regression with Randomized Preconditioning
Jiyan Yang, Yin-Lam Chow, Christopher Ré, Michael W. Mahoney (211):1−43, 2018 PDF BibTeX
-
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
Hongzhou Lin, Julien Mairal, Zaid Harchaoui (212):1−54, 2018 PDF BibTeX
-
Gaussian Lower Bound for the Information Bottleneck Limit
-
tick: a Python Library for Statistical Learning, with an emphasis on Hawkes Processes and Time-Dependent Models
Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaïffas, Søren V. Poulsen (214):1−5, 2018 codewebpagePDF BibTeX
-
SGDLibrary: A MATLAB library for stochastic optimization algorithms
-
Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks
Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz, Ness B. Shroff (216):1−34, 2018 PDF BibTeX
-
Simultaneous Clustering and Estimation of Heterogeneous Graphical Models
Botao Hao, Will Wei Sun, Yufeng Liu, Guang Cheng (217):1−58, 2018 PDF BibTeX
-
Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging
Shusen Wang, Alex Gittens, Michael W. Mahoney (218):1−50, 2018 PDF BibTeX
-
Compact Convex Projections
-
Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs
Emilija Perkovi\'c, Johannes Textor, Markus Kalisch, Marloes H. Maathuis (220):1−62, 2018 PDF BibTeX
-
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
-
Average Stability is Invariant to Data Preconditioning. Implications to Exp-concave Empirical Risk Minimization
-
Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification
Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford (223):1−42, 2018 PDF BibTeX
-
Learning Quadratic Variance Function (QVF) DAG Models via OverDispersion Scoring (ODS)
-
Improved spectral community detection in large heterogeneous networks
Hafiz TIOMOKO ALI, Romain COUILLET (225):1−49, 2018 PDF BibTeX
-
Statistical Inference on Random Dot Product Graphs: a Survey
Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, Daniel L Sussman (226):1−92, 2018 PDF BibTeX
-
Rate of Convergence of $k$-Nearest-Neighbor Classification Rule
Maik Döring, László Györfi, Harro Walk (227):1−16, 2018 PDF BibTeX
-
A Theory of Learning with Corrupted Labels
Brendan van Rooyen, Robert C. Williamson (228):1−50, 2018 PDF BibTeX
-
Interactive Algorithms: Pool, Stream and Precognitive Stream
-
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I. Jordan, Martin Jaggi (230):1−49, 2018 PDF BibTeX
-
Concentration inequalities for empirical processes of linear time series
-
A Cluster Elastic Net for Multivariate Regression
-
Characteristic and Universal Tensor Product Kernels
Zoltán Szabó, Bharath K. Sriperumbudur (233):1−29, 2018 PDF BibTeX
-
Learning Certifiably Optimal Rule Lists for Categorical Data
Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, Cynthia Rudin (234):1−78, 2018 PDF BibTeX