JMLR Volume 21
-
A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints
-
A Statistical Learning Approach to Modal Regression
Yunlong Feng, Jun Fan, Johan A.K. Suykens (2):1−35, 2020 PDF BibTeX
-
A Model of Fake Data in Data-driven Analysis
-
Universal Latent Space Model Fitting for Large Networks with Edge Covariates
Zhuang Ma, Zongming Ma, Hongsong Yuan (4):1−67, 2020 PDF BibTeX
-
Lower Bounds for Parallel and Randomized Convex Optimization
Jelena Diakonikolas, Cristóbal Guzmán (5):1−31, 2020 PDF BibTeX
-
Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms
Anna Little, Mauro Maggioni, James M. Murphy (6):1−66, 2020 codePDF BibTeX
-
Target Propagation in Recurrent Neural Networks
Nikolay Manchev, Michael Spratling (7):1−33, 2020 codePDF BibTeX
-
DESlib: A Dynamic ensemble selection library in Python
Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin, George D. C. Cavalcanti (8):1−5, 2020 codePDF BibTeX
-
On Mahalanobis Distance in Functional Settings
José R. Berrendero, Beatriz Bueno-Larraz, Antonio Cuevas (9):1−33, 2020 PDF BibTeX
-
Online Sufficient Dimension Reduction Through Sliced Inverse Regression
Zhanrui Cai, Runze Li, Liping Zhu (10):1−25, 2020 PDF BibTeX
-
Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information
T. Tony Cai, Tengyuan Liang, Alexander Rakhlin (11):1−34, 2020 PDF BibTeX
-
Neyman-Pearson classification: parametrics and sample size requirement
Xin Tong, Lucy Xia, Jiacheng Wang, Yang Feng (12):1−48, 2020 codePDF BibTeX
-
Generalized probabilistic principal component analysis of correlated data
-
On lp-Support Vector Machines and Multidimensional Kernels
Victor Blanco, Justo Puerto, Antonio M. Rodriguez-Chia (14):1−29, 2020 PDF BibTeX
-
Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning
Ery Arias-Castro, Adel Javanmard, Bruno Pelletier (15):1−37, 2020 PDF BibTeX
-
Practical Locally Private Heavy Hitters
Raef Bassily, Kobbi Nissim, Uri Stemmer, Abhradeep Thakurta (16):1−42, 2020 PDF BibTeX
-
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data
Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P. Cunningham, David Schiminovich, Christian P. Robert (17):1−53, 2020 PDF BibTeX
-
Connecting Spectral Clustering to Maximum Margins and Level Sets
-
High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix
Cheng Yong Tang, Ethan X. Fang, Yuexiao Dong (19):1−25, 2020 PDF BibTeX
-
Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections
-
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems
Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright (21):1−51, 2020 PDF BibTeX
-
A Unified Framework for Structured Graph Learning via Spectral Constraints
Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, Daniel P. Palomar (22):1−60, 2020 codePDF BibTeX
-
GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing
Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue Zhang, Shuai Zheng, Yi Zhu (23):1−7, 2020 PDF BibTeX
-
Distributed Feature Screening via Componentwise Debiasing
Xingxiang Li, Runze Li, Zhiming Xia, Chen Xu (24):1−32, 2020 PDF BibTeX
-
Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models
Ivona Bezáková, Antonio Blanca, Zongchen Chen, Daniel Štefankovič, Eric Vigoda (25):1−62, 2020 PDF BibTeX
-
Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes
Anders Ellern Bilgrau, Carel F.W. Peeters, Poul Svante Eriksen, Martin Boegsted, Wessel N. van Wieringen (26):1−52, 2020 PDF BibTeX
-
A New Class of Time Dependent Latent Factor Models with Applications
Sinead A. Williamson, Michael Minyi Zhang, Paul Damien (27):1−24, 2020 PDF BibTeX
-
On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms
Nicolas Garcia Trillos, Zachary Kaplan, Thabo Samakhoana, Daniel Sanz-Alonso (28):1−47, 2020 PDF BibTeX
-
The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response
-
Tensor Train Decomposition on TensorFlow (T3F)
Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, Ivan Oseledets (30):1−7, 2020 codePDF BibTeX
-
Generalized Nonbacktracking Bounds on the Influence
Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee (31):1−36, 2020 PDF BibTeX
-
Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping
-
On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent
-
Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent
Dominic Richards, Patrick Rebeschini (34):1−44, 2020 PDF BibTeX
-
Learning with Fenchel-Young losses
Mathieu Blondel, André F.T. Martins, Vlad Niculae (35):1−69, 2020 codePDF BibTeX
-
Noise Accumulation in High Dimensional Classification and Total Signal Index
Miriam R. Elman, Jessica Minnier, Xiaohui Chang, Dongseok Choi (36):1−23, 2020 codePDF BibTeX
-
Causal Discovery Toolbox: Uncovering causal relationships in Python
Diviyan Kalainathan, Olivier Goudet, Ritik Dutta (37):1−5, 2020 codePDF BibTeX
-
Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification
-
Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables
Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, Kun Zhang (39):1−24, 2020 PDF BibTeX
-
Optimal Bipartite Network Clustering
-
Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables
Rune Christiansen, Jonas Peters (41):1−46, 2020 codePDF BibTeX
-
Branch and Bound for Piecewise Linear Neural Network Verification
Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, M. Pawan Kumar (42):1−39, 2020 PDF BibTeX
-
Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data
Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan (43):1−36, 2020 PDF BibTeX
-
Dynamical Systems as Temporal Feature Spaces
-
A Convex Parametrization of a New Class of Universal Kernel Functions
Brendon K. Colbert, Matthew M. Peet (45):1−29, 2020 PDF BibTeX
-
pyts: A Python Package for Time Series Classification
-
Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement
Wouter Kool, Herke van Hoof, Max Welling (47):1−36, 2020 codePDF BibTeX
-
Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory
Thomas Ricatte, Rémi Gilleron, Marc Tommasi (48):1−18, 2020 PDF BibTeX
-
Ensemble Learning for Relational Data
Hoda Eldardiry, Jennifer Neville, Ryan A. Rossi (49):1−37, 2020 PDF BibTeX
-
Sparse and low-rank multivariate Hawkes processes
Emmanuel Bacry, Martin Bompaire, Stéphane Gaïffas, Jean-Francois Muzy (50):1−32, 2020 codePDF BibTeX
-
Learning Causal Networks via Additive Faithfulness
Kuang-Yao Lee, Tianqi Liu, Bing Li, Hongyu Zhao (51):1−38, 2020 PDF BibTeX
-
Expected Policy Gradients for Reinforcement Learning
-
High-Dimensional Inference for Cluster-Based Graphical Models
Carson Eisenach, Florentina Bunea, Yang Ning, Claudiu Dinicu (53):1−55, 2020 PDF BibTeX
-
GraKeL: A Graph Kernel Library in Python
Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, Michalis Vazirgiannis (54):1−5, 2020 codePDF BibTeX
-
Conjugate Gradients for Kernel Machines
Simon Bartels, Philipp Hennig (55):1−42, 2020 codePDF BibTeX
-
Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes
Peter D. Grünwald, Nishant A. Mehta (56):1−80, 2020 PDF BibTeX
-
Self-paced Multi-view Co-training
Fan Ma, Deyu Meng, Xuanyi Dong, Yi Yang (57):1−38, 2020 codePDF BibTeX
-
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions
Artin Spiridonoff, Alex Olshevsky, Ioannis Ch. Paschalidis (58):1−47, 2020 PDF BibTeX
-
Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis
-
Kymatio: Scattering Transforms in Python
Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan Bruna, Vincent Lostanlen, Muawiz Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella, Michael Eickenberg (60):1−6, 2020 codePDF BibTeX
-
Multiparameter Persistence Landscapes
-
Generalized Optimal Matching Methods for Causal Inference
-
Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning
-
Community-Based Group Graphical Lasso
Eugen Pircalabelu, Gerda Claeskens (64):1−32, 2020 PDF BibTeX
-
Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients
-
WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions
-
The weight function in the subtree kernel is decisive
-
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen, Simon S. Du, Xin T. Tong (68):1−41, 2020 PDF BibTeX
-
Union of Low-Rank Tensor Spaces: Clustering and Completion
Morteza Ashraphijuo, Xiaodong Wang (69):1−36, 2020 PDF BibTeX
-
Representation Learning for Dynamic Graphs: A Survey
Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, Pascal Poupart (70):1−73, 2020 PDF BibTeX
-
Estimation of a Low-rank Topic-Based Model for Information Cascades
Ming Yu, Varun Gupta, Mladen Kolar (71):1−47, 2020 codePDF BibTeX
-
(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Maxim Borisyak, Artem Ryzhikov, Andrey Ustyuzhanin, Denis Derkach, Fedor Ratnikov, Olga Mineeva (72):1−22, 2020 codePDF BibTeX
-
Scalable Approximate MCMC Algorithms for the Horseshoe Prior
James Johndrow, Paulo Orenstein, Anirban Bhattacharya (73):1−61, 2020 PDF BibTeX
-
High-dimensional Gaussian graphical models on network-linked data
Tianxi Li, Cheng Qian, Elizaveta Levina, Ji Zhu (74):1−45, 2020 codePDF BibTeX
-
Identifiability of Additive Noise Models Using Conditional Variances
-
GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
Anis Elgabli, Jihong Park, Amrit S. Bedi, Mehdi Bennis, Vaneet Aggarwal (76):1−39, 2020 PDF BibTeX
-
Multi-Player Bandits: The Adversarial Case
Pragnya Alatur, Kfir Y. Levy, Andreas Krause (77):1−23, 2020 PDF BibTeX
-
Harmless Overfitting: Using Denoising Autoencoders in Estimation of Distribution Algorithms
-
Quantile Graphical Models: a Bayesian Approach
Nilabja Guha, Veera Baladandayuthapani, Bani K. Mallick (79):1−47, 2020 PDF BibTeX
-
Memoryless Sequences for General Losses
-
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, Eric P. Xing (81):1−27, 2020 codePDF BibTeX
-
Sequential change-point detection in high-dimensional Gaussian graphical models
Hossein Keshavarz, George Michaildiis, Yves Atchade (82):1−57, 2020 PDF BibTeX
-
Discerning the Linear Convergence of ADMM for Structured Convex Optimization through the Lens of Variational Analysis
Xiaoming Yuan, Shangzhi Zeng, Jin Zhang (83):1−75, 2020 PDF BibTeX
-
Model-Preserving Sensitivity Analysis for Families of Gaussian Distributions
Christiane Görgen, Manuele Leonelli (84):1−32, 2020 PDF BibTeX
-
Effective Ways to Build and Evaluate Individual Survival Distributions
Humza Haider, Bret Hoehn, Sarah Davis, Russell Greiner (85):1−63, 2020 codePDF BibTeX
-
Convergence Rate of Optimal Quantization and Application to the Clustering Performance of the Empirical Measure
-
Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data
Toby Dylan Hocking, Guillem Rigaill, Paul Fearnhead, Guillaume Bourque (87):1−40, 2020 codePDF BibTeX
-
Target–Aware Bayesian Inference: How to Beat Optimal Conventional Estimators
Tom Rainforth, Adam Golinski, Frank Wood, Sheheryar Zaidi (88):1−54, 2020 codePDF BibTeX
-
Causal Discovery from Heterogeneous/Nonstationary Data
Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour, Bernhard Schölkopf (89):1−53, 2020 codePDF BibTeX
-
Probabilistic Symmetries and Invariant Neural Networks
Benjamin Bloem-Reddy, Yee Whye Teh (90):1−61, 2020 PDF BibTeX
-
Simultaneous Inference for Pairwise Graphical Models with Generalized Score Matching
Ming Yu, Varun Gupta, Mladen Kolar (91):1−51, 2020 PDF BibTeX
-
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, Bin Yu (92):1−72, 2020 PDF BibTeX
-
Distributed Kernel Ridge Regression with Communications
Shao-Bo Lin, Di Wang, Ding-Xuan Zhou (93):1−38, 2020 codePDF BibTeX
-
Minimax Nonparametric Parallelism Test
Xin Xing, Meimei Liu, Ping Ma, Wenxuan Zhong (94):1−47, 2020 codePDF BibTeX
-
Cornac: A Comparative Framework for Multimodal Recommender Systems
Aghiles Salah, Quoc-Tuan Truong, Hady W. Lauw (95):1−5, 2020 codePDF BibTeX
-
pyDML: A Python Library for Distance Metric Learning
Juan Luis Suárez, Salvador García, Francisco Herrera (96):1−7, 2020 codePDF BibTeX
-
Loss Control with Rank-one Covariance Estimate for Short-term Portfolio Optimization
Zhao-Rong Lai, Liming Tan, Xiaotian Wu, Liangda Fang (97):1−37, 2020 codePDF BibTeX
-
A General Framework for Consistent Structured Prediction with Implicit Loss Embeddings
Carlo Ciliberto, Lorenzo Rosasco, Alessandro Rudi (98):1−67, 2020 PDF BibTeX
-
Joint Causal Inference from Multiple Contexts
Joris M. Mooij, Sara Magliacane, Tom Claassen (99):1−108, 2020 codePDF BibTeX
-
General Latent Feature Models for Heterogeneous Datasets
Isabel Valera, Melanie F. Pradier, Maria Lomeli, Zoubin Ghahramani (100):1−49, 2020 codePDF BibTeX
-
Regularized Gaussian Belief Propagation with Nodes of Arbitrary Size
Francois Kamper, Sarel J. Steel, Johan A. du Preez (101):1−42, 2020 PDF BibTeX
-
AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with Python Bindings)
Eugenio Bargiacchi, Diederik M. Roijers, Ann Nowé (102):1−12, 2020 codePDF BibTeX
-
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou, Pan Xu, Quanquan Gu (103):1−63, 2020 PDF BibTeX
-
Sparse Projection Oblique Randomer Forests
Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L. Patsolic, Benjamin Falk, Carey E. Priebe, Jason Yim, Randal Burns, Mauro Maggioni, Joshua T. Vogelstein (104):1−39, 2020 codePDF BibTeX
-
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari, Hamed Hassani, Amin Karbasi (105):1−49, 2020 PDF BibTeX
-
Quadratic Decomposable Submodular Function Minimization: Theory and Practice
Pan Li, Niao He, Olgica Milenkovic (106):1−49, 2020 codePDF BibTeX
-
Change Point Estimation in a Dynamic Stochastic Block Model
Monika Bhattacharjee, Moulinath Banerjee, George Michailidis (107):1−59, 2020 PDF BibTeX
-
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, Jian Chen (108):1−5, 2020 codePDF BibTeX
-
Bayesian Model Selection with Graph Structured Sparsity
-
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Quoc Tran-Dinh (110):1−48, 2020 codePDF BibTeX
-
MFE: Towards reproducible meta-feature extraction
Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís P. F. Garcia, Jefferson T. Oliva, André C. P. L. F. de Carvalho (111):1−5, 2020 codePDF BibTeX
-
High-dimensional Linear Discriminant Analysis Classifier for Spiked Covariance Model
Houssem Sifaou, Abla Kammoun, Mohamed-Slim Alouini (112):1−24, 2020 PDF BibTeX
-
Prediction regions through Inverse Regression
Emilie Devijver, Emeline Perthame (113):1−24, 2020 codePDF BibTeX
-
NEVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gómez, Pratim Chattaraj, Niloy Ganguly, Manuel Gomez-Rodriguez (114):1−33, 2020 PDF BibTeX
-
Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space
Elisabeth Gassiat, Sylvain Le Corff, Luc Lehéricy (115):1−40, 2020 PDF BibTeX
-
GluonTS: Probabilistic and Neural Time Series Modeling in Python
Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen, Yuyang Wang (116):1−6, 2020 codePDF BibTeX
-
Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models
Jiahe Lin, George Michailidis (117):1−51, 2020 codePDF BibTeX
-
Tslearn, A Machine Learning Toolkit for Time Series Data
Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, Eli Woods (118):1−6, 2020 codePDF BibTeX
-
Bayesian Closed Surface Fitting Through Tensor Products
Olivier Binette, Debdeep Pati, David B. Dunson (119):1−26, 2020 PDF BibTeX
-
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari, Alec Koppel, Martin Takac, Alejandro Ribeiro (120):1−51, 2020 PDF BibTeX
-
Agnostic Estimation for Phase Retrieval
Matey Neykov, Zhaoran Wang, Han Liu (121):1−39, 2020 PDF BibTeX
-
Kernel-estimated Nonparametric Overlap-Based Syncytial Clustering
Israel A. Almodóvar-Rivera, Ranjan Maitra (122):1−54, 2020 codePDF BibTeX
-
Tensor Regression Networks
Jean Kossaifi, Zachary C. Lipton, Arinbjorn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar (123):1−21, 2020 PDF BibTeX
-
Fast Bayesian Inference of Sparse Networks with Automatic Sparsity Determination
Hang Yu, Songwei Wu, Luyin Xin, Justin Dauwels (124):1−54, 2020 codePDF BibTeX
-
Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
Rad Niazadeh, Tim Roughgarden, Joshua R. Wang (125):1−31, 2020 PDF BibTeX
-
Distributed Minimum Error Entropy Algorithms
-
Apache Mahout: Machine Learning on Distributed Dataflow Systems
Robin Anil, Gokhan Capan, Isabel Drost-Fromm, Ted Dunning, Ellen Friedman, Trevor Grant, Shannon Quinn, Paritosh Ranjan, Sebastian Schelter, Özgür Yılmazel (127):1−6, 2020 codePDF BibTeX
-
A Regularization-Based Adaptive Test for High-Dimensional GLMs
Chong Wu, Gongjun Xu, Xiaotong Shen, Wei Pan (128):1−67, 2020 codePDF BibTeX
-
A General System of Differential Equations to Model First-Order Adaptive Algorithms
Andre Belotto da Silva, Maxime Gazeau (129):1−42, 2020 PDF BibTeX
-
AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models
Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilović, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John T. Richards, Prasanna Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, Yunfeng Zhang (130):1−6, 2020 codePDF BibTeX
-
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt, Carl Edward Rasmussen, Mark van der Wilk (131):1−63, 2020 codePDF BibTeX
-
Monte Carlo Gradient Estimation in Machine Learning
Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih (132):1−62, 2020 codePDF BibTeX
-
Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers
Yao Ma, Alex Olshevsky, Csaba Szepesvari, Venkatesh Saligrama (133):1−36, 2020 PDF BibTeX
-
Probabilistic Learning on Graphs via Contextual Architectures
Davide Bacciu, Federico Errica, Alessio Micheli (134):1−39, 2020 codePDF BibTeX
-
A Unified Framework of Online Learning Algorithms for Training Recurrent Neural Networks
Owen Marschall, Kyunghyun Cho, Cristina Savin (135):1−34, 2020 codePDF BibTeX
-
Convergence Rates for the Stochastic Gradient Descent Method for Non-Convex Objective Functions
Benjamin Fehrman, Benjamin Gess, Arnulf Jentzen (136):1−48, 2020 PDF BibTeX
-
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting
Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, Chicheng Zhang (137):1−45, 2020 PDF BibTeX
-
metric-learn: Metric Learning Algorithms in Python
William de Vazelhes, CJ Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet (138):1−6, 2020 codePDF BibTeX
-
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Networks
Amir R. Asadi, Emmanuel Abbe (139):1−32, 2020 codePDF BibTeX
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu (140):1−67, 2020 codePDF BibTeX
-
Importance Sampling Techniques for Policy Optimization
Alberto Maria Metelli, Matteo Papini, Nico Montali, Marcello Restelli (141):1−75, 2020 codePDF BibTeX
-
Nesterov's Acceleration for Approximate Newton
Haishan Ye, Luo Luo, Zhihua Zhang (142):1−37, 2020 PDF BibTeX
-
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin, Selvaprabu Nadarajah, Negar Soheili, Tianbao Yang (143):1−45, 2020 PDF BibTeX
-
Empirical Priors for Prediction in Sparse High-dimensional Linear Regression
-
Orlicz Random Fourier Features
Linda Chamakh, Emmanuel Gobet, Zoltán Szabó (145):1−37, 2020 PDF BibTeX
-
New Insights and Perspectives on the Natural Gradient Method
-
Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms
-
Local Causal Network Learning for Finding Pairs of Total and Direct Effects
Yue Liu, Zhuangyan Fang, Yangbo He, Zhi Geng, Chunchen Liu (148):1−37, 2020 PDF BibTeX
-
Distributionally Ambiguous Optimization for Batch Bayesian Optimization
Nikitas Rontsis, Michael A. Osborne, Paul J. Goulart (149):1−26, 2020 codePDF BibTeX
-
The Kalai-Smorodinsky solution for many-objective Bayesian optimization
Mickael Binois, Victor Picheny, Patrick Taillandier, Abderrahmane Habbal (150):1−42, 2020 codePDF BibTeX
-
Robust Reinforcement Learning with Bayesian Optimisation and Quadrature
Supratik Paul, Konstantinos Chatzilygeroudis, Kamil Ciosek, Jean-Baptiste Mouret, Michael A. Osborne, Shimon Whiteson (151):1−31, 2020 PDF BibTeX
-
Dual Iterative Hard Thresholding
Xiao-Tong Yuan, Bo Liu, Lezi Wang, Qingshan Liu, Dimitris N. Metaxas (152):1−50, 2020 PDF BibTeX
-
Spectral Algorithms for Community Detection in Directed Networks
Zhe Wang, Yingbin Liang, Pengsheng Ji (153):1−45, 2020 PDF BibTeX
-
Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality
-
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
Andrei Kulunchakov, Julien Mairal (155):1−52, 2020 PDF BibTeX
-
Asymptotic Consistency of $\alpha$-{R}\'enyi-Approximate Posteriors
Prateek Jaiswal, Vinayak Rao, Harsha Honnappa (156):1−42, 2020 PDF BibTeX
-
Streamlined Variational Inference with Higher Level Random Effects
Tui H. Nolan, Marianne Menictas, Matt P. Wand (157):1−62, 2020 codePDF BibTeX
-
Learning Big Gaussian Bayesian Networks: Partition, Estimation and Fusion
-
Generating Weighted MAX-2-SAT Instances with Frustrated Loops: an RBM Case Study
Yan Ru Pei, Haik Manukian, Massimiliano Di Ventra (159):1−55, 2020 codePDF BibTeX
-
Generative Adversarial Nets for Robust Scatter Estimation: A Proper Scoring Rule Perspective
Chao Gao, Yuan Yao, Weizhi Zhu (160):1−48, 2020 codePDF BibTeX
-
apricot: Submodular selection for data summarization in Python
Jacob Schreiber, Jeffrey Bilmes, William Stafford Noble (161):1−6, 2020 codePDF BibTeX
-
Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information
Yichong Xu, Sivaraman Balakrishnan, Aarti Singh, Artur Dubrawski (162):1−54, 2020 PDF BibTeX
-
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz, Mingjun Zhong, Gerhard Neumann (163):1−60, 2020 codePDF BibTeX
-
Cramer-Wold Auto-Encoder
Szymon Knop, Przemysław Spurek, Jacek Tabor, Igor Podolak, Marcin Mazur, Stanisław Jastrzębski (164):1−28, 2020 codePDF BibTeX
-
Complete Dictionary Learning via L4-Norm Maximization over the Orthogonal Group
Yuexiang Zhai, Zitong Yang, Zhenyu Liao, John Wright, Yi Ma (165):1−68, 2020 PDF BibTeX
-
High Dimensional Forecasting via Interpretable Vector Autoregression
William B. Nicholson, Ines Wilms, Jacob Bien, David S. Matteson (166):1−52, 2020 codePDF BibTeX
-
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
Nathan Kallus, Masatoshi Uehara (167):1−63, 2020 codePDF BibTeX
-
Convex and Non-Convex Approaches for Statistical Inference with Class-Conditional Noisy Labels
Hyebin Song, Ran Dai, Garvesh Raskutti, Rina Foygel Barber (168):1−58, 2020 PDF BibTeX
-
The Optimal Ridge Penalty for Real-world High-dimensional Data Can Be Zero or Negative due to the Implicit Ridge Regularization
Dmitry Kobak, Jonathan Lomond, Benoit Sanchez (169):1−16, 2020 codePDF BibTeX
-
Rationally Inattentive Inverse Reinforcement Learning Explains YouTube Commenting Behavior
William Hoiles, Vikram Krishnamurthy, Kunal Pattanayak (170):1−39, 2020 PDF BibTeX
-
Randomization as Regularization: A Degrees of Freedom Explanation for Random Forest Success
-
Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise
Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Yoichi Matsuo, Yoshinobu Kawahara (172):1−29, 2020 PDF BibTeX
-
Doubly Distributed Supervised Learning and Inference with High-Dimensional Correlated Outcomes
Emily C. Hector, Peter X.-K. Song (173):1−35, 2020 PDF BibTeX
-
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality
-
Wide Neural Networks with Bottlenecks are Deep Gaussian Processes
Devanshu Agrawal, Theodore Papamarkou, Jacob Hinkle (175):1−66, 2020 codePDF BibTeX
-
Breaking the Curse of Nonregularity with Subagging --- Inference of the Mean Outcome under Optimal Treatment Regimes
Chengchun Shi, Wenbin Lu, Rui Song (176):1−67, 2020 PDF BibTeX
-
Optimal Estimation of Sparse Topic Models
Xin Bing, Florentina Bunea, Marten Wegkamp (177):1−45, 2020 PDF BibTeX
-
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, Shimon Whiteson (178):1−51, 2020 codePDF BibTeX
-
Variational Inference for Computational Imaging Inverse Problems
Francesco Tonolini, Jack Radford, Alex Turpin, Daniele Faccio, Roderick Murray-Smith (179):1−46, 2020 PDF BibTeX
-
Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction
Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi (180):1−51, 2020 codePDF BibTeX
-
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone (181):1−50, 2020 PDF BibTeX
-
Distributed High-dimensional Regression Under a Quantile Loss Function
Xi Chen, Weidong Liu, Xiaojun Mao, Zhuoyi Yang (182):1−43, 2020 PDF BibTeX
-
Near-optimal Individualized Treatment Recommendations
Haomiao Meng, Ying-Qi Zhao, Haoda Fu, Xingye Qiao (183):1−28, 2020 PDF BibTeX
-
Topology of Deep Neural Networks
Gregory Naitzat, Andrey Zhitnikov, Lek-Heng Lim (184):1−40, 2020 codePDF BibTeX
-
Scikit-network: Graph Analysis in Python
Thomas Bonald, Nathan de Lara, Quentin Lutz, Bertrand Charpentier (185):1−6, 2020 codePDF BibTeX
-
Consistency of Semi-Supervised Learning Algorithms on Graphs: Probit and One-Hot Methods
Franca Hoffmann, Bamdad Hosseini, Zhi Ren, Andrew M Stuart (186):1−55, 2020 PDF BibTeX
-
Kriging Prediction with Isotropic Matern Correlations: Robustness and Experimental Designs
-
Efficient Adjustment Sets for Population Average Causal Treatment Effect Estimation in Graphical Models
Andrea Rotnitzky, Ezequiel Smucler (188):1−86, 2020 PDF BibTeX
-
Beyond Trees: Classification with Sparse Pairwise Dependencies
Yaniv Tenzer, Amit Moscovich, Mary Frances Dorn, Boaz Nadler, Clifford Spiegelman (189):1−33, 2020 PDF BibTeX
-
A Unified q-Memorization Framework for Asynchronous Stochastic Optimization
Bin Gu, Wenhan Xian, Zhouyuan Huo, Cheng Deng, Heng Huang (190):1−53, 2020 PDF BibTeX
-
Adaptive Smoothing for Path Integral Control
Dominik Thalmeier, Hilbert J. Kappen, Simone Totaro, Vicenç Gómez (191):1−37, 2020 codePDF BibTeX
-
Semi-parametric Learning of Structured Temporal Point Processes
Ganggang Xu, Ming Wang, Jiangze Bian, Hui Huang, Timothy R. Burch, Sandro C. Andrade, Jingfei Zhang, Yongtao Guan (192):1−39, 2020 PDF BibTeX
-
Learning and Interpreting Multi-Multi-Instance Learning Networks
Alessandro Tibo, Manfred Jaeger, Paolo Frasconi (193):1−60, 2020 PDF BibTeX
-
Contextual Explanation Networks
Maruan Al-Shedivat, Avinava Dubey, Eric Xing (194):1−44, 2020 codePDF BibTeX
-
Conic Optimization for Quadratic Regression Under Sparse Noise
Igor Molybog, Ramtin Madani, Javad Lavaei (195):1−36, 2020 codePDF BibTeX
-
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning
Lucas Lehnert, Michael L. Littman (196):1−53, 2020 PDF BibTeX
-
A determinantal point process for column subset selection
Ayoub Belhadji, Rémi Bardenet, Pierre Chainais (197):1−62, 2020 PDF BibTeX
-
Reinforcement Learning in Continuous Time and Space: A Stochastic Control Approach
Haoran Wang, Thaleia Zariphopoulou, Xun Yu Zhou (198):1−34, 2020 PDF BibTeX
-
Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
-
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy
Di Wang, Marco Gaboardi, Adam Smith, Jinhui Xu (200):1−39, 2020 PDF BibTeX
-
Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models
Reza Mohammadi, Matthew Pratola, Maurits Kaptein (201):1−26, 2020 PDF BibTeX
-
A Numerical Measure of the Instability of Mapper-Type Algorithms
Francisco Belchi, Jacek Brodzki, Matthew Burfitt, Mahesan Niranjan (202):1−45, 2020 codePDF BibTeX
-
Dynamic Control of Stochastic Evolution: A Deep Reinforcement Learning Approach to Adaptively Targeting Emergent Drug Resistance
-
Two-Stage Approach to Multivariate Linear Regression with Sparsely Mismatched Data
Martin Slawski, Emanuel Ben-David, Ping Li (204):1−42, 2020 PDF BibTeX
-
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithms
-
On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond
-
Functional Martingale Residual Process for High-Dimensional Cox Regression with Model Averaging
Baihua He, Yanyan Liu, Yuanshan Wu, Guosheng Yin, Xingqiu Zhao (207):1−37, 2020 PDF BibTeX
-
Learning Data-adaptive Non-parametric Kernels
Fanghui Liu, Xiaolin Huang, Chen Gong, Jie Yang, Li Li (208):1−39, 2020 PDF BibTeX
-
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem (209):1−62, 2020 codePDF BibTeX
-
ProtoAttend: Attention-Based Prototypical Learning
-
Random Smoothing Might be Unable to Certify $\ell_\infty$ Robustness for High-Dimensional Images
Avrim Blum, Travis Dick, Naren Manoj, Hongyang Zhang (211):1−21, 2020 codePDF BibTeX
-
scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn
-
Multiclass Anomaly Detector: the CS++ Support Vector Machine
Alistair Shilton, Sutharshan Rajasegarar, Marimuthu Palaniswami (213):1−39, 2020 PDF BibTeX
-
Provable Convex Co-clustering of Tensors
Eric C. Chi, Brian J. Gaines, Will Wei Sun, Hua Zhou, Jian Yang (214):1−58, 2020 PDF BibTeX
-
Mining Topological Structure in Graphs through Forest Representations
Robin Vandaele, Yvan Saeys, Tijl De Bie (215):1−68, 2020 PDF BibTeX
-
Dynamic Assortment Optimization with Changing Contextual Information
-
On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
Sam Davanloo Tajbakhsh, Necdet Serhat Aybat, Enrique Del Castillo (217):1−41, 2020 codePDF BibTeX
-
Spectral bandits
Tomáš Kocák, Rémi Munos, Branislav Kveton, Shipra Agrawal, Michal Valko (218):1−44, 2020 PDF BibTeX
-
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel Ward, Xiaoxia Wu, Leon Bottou (219):1−30, 2020 PDF BibTeX
-
Diffeomorphic Learning
-
Learning Sums of Independent Random Variables with Sparse Collective Support
Anindya De, Philip M. Long, Rocco A. Servedio (221):1−79, 2020 PDF BibTeX
-
Theory of Curriculum Learning, with Convex Loss Functions
-
Geomstats: A Python Package for Riemannian Geometry in Machine Learning
Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas Gerald, Paul Chauchat, Christian Shewmake, Daniel Brooks, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec (223):1−9, 2020 codePDF BibTeX
-
Ultra-High Dimensional Single-Index Quantile Regression
Yuankun Zhang, Heng Lian, Yan Yu (224):1−25, 2020 PDF BibTeX
-
Recovery of a Mixture of Gaussians by Sum-of-Norms Clustering
Tao Jiang, Stephen Vavasis, Chen Wen Zhai (225):1−16, 2020 PDF BibTeX
-
A Sparse Semismooth Newton Based Proximal Majorization-Minimization Algorithm for Nonconvex Square-Root-Loss Regression Problems
Peipei Tang, Chengjing Wang, Defeng Sun, Kim-Chuan Toh (226):1−38, 2020 PDF BibTeX
-
Significance Tests for Neural Networks
-
Posterior sampling strategies based on discretized stochastic differential equations for machine learning applications
Frederik Heber, Žofia Trst’anová, Benedict Leimkuhler (228):1−33, 2020 codePDF BibTeX
-
Nonparametric graphical model for counts
Arkaprava Roy, David B Dunson (229):1−21, 2020 codePDF BibTeX
-
Stable Regression: On the Power of Optimization over Randomization
-
Fast Exact Matrix Completion: A Unified Optimization Framework for Matrix Completion
Dimitris Bertsimas, Michael Lingzhi Li (231):1−43, 2020 PDF BibTeX
-
Spectral Deconfounding via Perturbed Sparse Linear Models
Domagoj Ćevid, Peter Bühlmann, Nicolai Meinshausen (232):1−41, 2020 PDF BibTeX
-
Robust high dimensional learning for Lipschitz and convex losses
Chinot Geoffrey, Lecué Guillaume, Lerasle Matthieu (233):1−47, 2020 PDF BibTeX
-
Dual Extrapolation for Sparse GLMs
Mathurin Massias, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon (234):1−33, 2020 codePDF BibTeX
-
Convex Programming for Estimation in Nonlinear Recurrent Models
-
Lower Bounds for Learning Distributions under Communication Constraints via Fisher Information
Leighton Pate Barnes, Yanjun Han, Ayfer Ozgur (236):1−30, 2020 PDF BibTeX
-
The Error-Feedback framework: SGD with Delayed Gradients
Sebastian U. Stich, Sai Praneeth Karimireddy (237):1−36, 2020 PDF BibTeX
-
algcomparison: Comparing the Performance of Graphical Structure Learning Algorithms with TETRAD
Joseph D. Ramsey, Daniel Malinsky, Kevin V. Bui (238):1−6, 2020 codePDF BibTeX
-
Minimal Learning Machine: Theoretical Results and Clustering-Based Reference Point Selection
Joonas Hämäläinen, Alisson S. C. Alencar, Tommi Kärkkäinen, César L. C. Mattos, Amauri H. Souza Júnior, João P. P. Gomes (239):1−29, 2020 PDF BibTeX
-
Risk Bounds for Reservoir Computing
Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega (240):1−61, 2020 PDF BibTeX
-
Efficient Inference for Nonparametric Hawkes Processes Using Auxiliary Latent Variables
Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, Fang Chen (241):1−31, 2020 PDF BibTeX
-
Fair Data Adaptation with Quantile Preservation
Drago Plečko, Nicolai Meinshausen (242):1−44, 2020 codePDF BibTeX
-
Best Practices for Scientific Research on Neural Architecture Search
Marius Lindauer, Frank Hutter (243):1−18, 2020 codePDF BibTeX
-
Rank-based Lasso - efficient methods for high-dimensional robust model selection
Wojciech Rejchel, Małgorzata Bogdan (244):1−47, 2020 PDF BibTeX
-
A Group-Theoretic Framework for Data Augmentation
Shuxiao Chen, Edgar Dobriban, Jane H. Lee (245):1−71, 2020 codePDF BibTeX
-
On Efficient Adjustment in Causal Graphs
Janine Witte, Leonard Henckel, Marloes H. Maathuis, Vanessa Didelez (246):1−45, 2020 PDF BibTeX
-
Adaptive Rates for Total Variation Image Denoising
Francesco Ortelli, Sara van de Geer (247):1−38, 2020 codePDF BibTeX
-
Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning
Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, Joelle Pineau (248):1−43, 2020 codePDF BibTeX
-
Learning Mixed Latent Tree Models
Can Zhou, Xiaofei Wang, Jianhua Guo (249):1−35, 2020 PDF BibTeX
-
High-dimensional quantile tensor regression
Wenqi Lu, Zhongyi Zhu, Heng Lian (250):1−31, 2020 PDF BibTeX
-
Online matrix factorization for Markovian data and applications to Network Dictionary Learning
Hanbaek Lyu, Deanna Needell, Laura Balzano (251):1−49, 2020 codePDF BibTeX
-
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra