JMLR Volume 17
-
On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models
Emilie Kaufmann, Olivier Cappé, Aurélien Garivier (1):1−42, 2016 PDF BibTeX
-
Multiscale Dictionary Learning: Non-Asymptotic Bounds and Robustness
Mauro Maggioni, Stanislav Minsker, Nate Strawn (2):1−51, 2016 PDF BibTeX
-
Consistent Algorithms for Clustering Time Series
Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, Philippe Preux (3):1−32, 2016 PDF BibTeX
-
Random Rotation Ensembles
-
Should We Really Use Post-Hoc Tests Based on Mean-Ranks?
Alessio Benavoli, Giorgio Corani, Francesca Mangili (5):1−10, 2016 PDF BibTeX
-
Minimax Rates in Permutation Estimation for Feature Matching
Olivier Collier, Arnak S. Dalalyan (6):1−31, 2016 PDF BibTeX
-
Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics
Yee Whye Teh, Alexandre H. Thiery, Sebastian J. Vollmer (7):1−33, 2016 PDF BibTeX
-
Knowledge Matters: Importance of Prior Information for Optimization
-
Harry: A Tool for Measuring String Similarity
Konrad Rieck, Christian Wressnegger (9):1−5, 2016 codewebpagePDF BibTeX
-
Herded Gibbs Sampling
Yutian Chen, Luke Bornn, Nando de Freitas, Mareija Eskelin, Jing Fang, Max Welling (10):1−29, 2016 PDF BibTeX
-
Complexity of Representation and Inference in Compositional Models with Part Sharing
-
Noisy Sparse Subspace Clustering
-
Learning the Variance of the Reward-To-Go
Aviv Tamar, Dotan Di Castro, Shie Mannor (13):1−36, 2016 PDF BibTeX
-
Convex Calibration Dimension for Multiclass Loss Matrices
Harish G. Ramaswamy, Shivani Agarwal (14):1−45, 2016 PDF BibTeX
-
LLORMA: Local Low-Rank Matrix Approximation
Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, Samy Bengio (15):1−24, 2016 PDF BibTeX
-
A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces
Xiang Zhang, Yichao Wu, Lan Wang, Runze Li (16):1−26, 2016 PDF BibTeX
-
Extremal Mechanisms for Local Differential Privacy
Peter Kairouz, Sewoong Oh, Pramod Viswanath (17):1−51, 2016 PDF BibTeX
-
Loss Minimization and Parameter Estimation with Heavy Tails
-
Analysis of Classification-based Policy Iteration Algorithms
Alessandro Lazaric, Mohammad Ghavamzadeh, R{\'e}mi Munos (19):1−30, 2016 PDF BibTeX
-
Operator-valued Kernels for Learning from Functional Response Data
Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Alain Rakotomamonjy, Julien Audiffren (20):1−54, 2016 PDF BibTeX
-
MEKA: A Multi-label/Multi-target Extension to WEKA
Jesse Read, Peter Reutemann, Bernhard Pfahringer, Geoff Holmes (21):1−5, 2016 codewebpagePDF BibTeX
-
Gradients Weights improve Regression and Classification
Samory Kpotufe, Abdeslam Boularias, Thomas Schultz, Kyoungok Kim (22):1−34, 2016 PDF BibTeX
-
A Closer Look at Adaptive Regret
Dmitry Adamskiy, Wouter M. Koolen, Alexey Chernov, Vladimir Vovk (23):1−21, 2016 PDF BibTeX
-
Learning Using Anti-Training with Sacrificial Data
Michael L. Valenzuela, Jerzy W. Rozenblit (24):1−42, 2016 PDF BibTeX
-
A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning
Hà Quang Minh, Loris Bazzani, Vittorio Murino (25):1−72, 2016 PDF BibTeX
-
Quantifying Uncertainty in Random Forests via Confidence Intervals and Hypothesis Tests
-
Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices
-
Non-linear Causal Inference using Gaussianity Measures
Daniel Hern{\'a}ndez-Lobato, Pablo Morales-Mombiela, David Lopez-Paz, Alberto Su{\'a}rez (28):1−39, 2016 PDF BibTeX
-
Consistent Distribution-Free $K$-Sample and Independence Tests for Univariate Random Variables
Ruth Heller, Yair Heller, Shachar Kaufman, Barak Brill, Malka Gorfine (29):1−54, 2016 PDF BibTeX
-
A Gibbs Sampler for Learning DAGs
Robert J. B. Goudie, Sach Mukherjee (30):1−39, 2016 PDF BibTeX
-
Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning
François Denis, Mattias Gybels, Amaury Habrard (31):1−32, 2016 PDF BibTeX
-
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks
Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf (32):1−102, 2016 appendix 1appendix 2PDF BibTeX
-
Multi-task Sparse Structure Learning with Gaussian Copula Models
André R. Gonçalves, Fernando J. Von Zuben, Arindam Banerjee (33):1−30, 2016 PDF BibTeX
-
MLlib: Machine Learning in Apache Spark
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar (34):1−7, 2016 codewebpagePDF BibTeX
-
OLPS: A Toolbox for On-Line Portfolio Selection
Bin Li, Doyen Sahoo, Steven C.H. Hoi (35):1−5, 2016 PDF BibTeX
-
A Bounded p-norm Approximation of Max-Convolution for Sub-Quadratic Bayesian Inference on Additive Factors
-
Hybrid Orthogonal Projection and Estimation (HOPE): A New Framework to Learn Neural Networks
Shiliang Zhang, Hui Jiang, Lirong Dai (37):1−33, 2016 PDF BibTeX
-
The Optimal Sample Complexity of PAC Learning
-
End-to-End Training of Deep Visuomotor Policies
Sergey Levine, Chelsea Finn, Trevor Darrell, Pieter Abbeel (39):1−40, 2016 PDF BibTeX
-
On Quantile Regression in Reproducing Kernel Hilbert Spaces with the Data Sparsity Constraint
Chong Zhang, Yufeng Liu, Yichao Wu (40):1−45, 2016 PDF BibTeX
-
BayesPy: Variational Bayesian Inference in Python
-
Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes
Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence (42):1−62, 2016 PDF BibTeX
-
On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift Algorithm
Ery Arias-Castro, David Mason, Bruno Pelletier (43):1−28, 2016 PDF BibTeX
-
Scalable Learning of Bayesian Network Classifiers
Ana M. Martínez, Geoffrey I. Webb, Shenglei Chen, Nayyar A. Zaidi (44):1−35, 2016 PDF BibTeX
-
A Unified View on Multi-class Support Vector Classification
{\"U}rün Do\u{g}an, Tobias Glasmachers, Christian Igel (45):1−32, 2016 PDF BibTeX
-
Addressing Environment Non-Stationarity by Repeating Q-learning Updates
Sherief Abdallah, Michael Kaisers (46):1−31, 2016 PDF BibTeX
-
Large Scale Online Kernel Learning
Jing Lu, Steven C.H. Hoi, Jialei Wang, Peilin Zhao, Zhi-Yong Liu (47):1−43, 2016 PDF BibTeX
-
Kernel Mean Shrinkage Estimators
Krikamol Mu, et, Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf (48):1−41, 2016 PDF BibTeX
-
SPSD Matrix Approximation vis Column Selection: Theories, Algorithms, and Extensions
Shusen Wang, Luo Luo, Zhihua Zhang (49):1−49, 2016 PDF BibTeX
-
Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms
Wei Chen, Yajun Wang, Yang Yuan, Qinshi Wang (50):1−33, 2016 PDF BibTeX
-
Differentially Private Data Releasing for Smooth Queries
Ziteng Wang, Chi Jin, Kai Fan, Jiaqi Zhang, Junliang Huang, Yiqiao Zhong, Liwei Wang (51):1−42, 2016 PDF BibTeX
-
Subspace Learning with Partial Information
Alon Gonen, Dan Rosenbaum, Yonina C. Eldar, Shai Shalev-Shwartz (52):1−21, 2016 PDF BibTeX
-
Iterative Hessian Sketch: Fast and Accurate Solution Approximation for Constrained Least-Squares
Mert Pilanci, Martin J. Wainwright (53):1−38, 2016 PDF BibTeX
-
Estimating Causal Structure Using Conditional DAG Models
Chris. J. Oates, Jim Q. Smith, Sach Mukherjee (54):1−23, 2016 PDF BibTeX
-
Adaptive Lasso and group-Lasso for functional Poisson regression
Stéphane Ivanoff, Franck Picard, Vincent Rivoirard (55):1−46, 2016 PDF BibTeX
-
Causal Inference through a Witness Protection Program
-
Structure Discovery in Bayesian Networks by Sampling Partial Orders
Teppo Niinim\"{a}ki, Pekka Parviainen, Mikko Koivisto (57):1−47, 2016 PDF BibTeX
-
Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence
Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramch, ran, Martin J. Wainwright (58):1−47, 2016 PDF BibTeX
-
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, Victor Lempitsky (59):1−35, 2016 PDF BibTeX
-
Probabilistic Low-Rank Matrix Completion from Quantized Measurements
-
DSA: Decentralized Double Stochastic Averaging Gradient Algorithm
Aryan Mokhtari, Alejandro Ribeiro (61):1−35, 2016 PDF BibTeX
-
The Statistical Performance of Collaborative Inference
Gérard Biau, Kevin Bleakley, Benoît Cadre (62):1−29, 2016 PDF BibTeX
-
Convergence of an Alternating Maximization Procedure
Andreas Andresen, Vladimir Spokoiny (63):1−53, 2016 PDF BibTeX
-
StructED: Risk Minimization in Structured Prediction
-
Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
-
Bayesian Policy Gradient and Actor-Critic Algorithms
Mohammad Ghavamzadeh, Yaakov Engel, Michal Valko (66):1−53, 2016 PDF BibTeX
-
Practical Kernel-Based Reinforcement Learning
André M.S. Barreto, Doina Precup, Joelle Pineau (67):1−70, 2016 PDF BibTeX
-
An Information-Theoretic Analysis of Thompson Sampling
-
Compressed Gaussian Process for Manifold Regression
Rajarshi Guhaniyogi, David B. Dunson (69):1−26, 2016 PDF BibTeX
-
On the Characterization of a Class of Fisher-Consistent Loss Functions and its Application to Boosting
Matey Neykov, Jun S. Liu, Tianxi Cai (70):1−32, 2016 PDF BibTeX
-
Exact Inference on Gaussian Graphical Models of Arbitrary Topology using Path-Sums
P.-L. Giscard, Z. Choo, S. J. Thwaite, D. Jaksch (71):1−19, 2016 PDF BibTeX
-
Challenges in multimodal gesture recognition
Sergio Escalera, Vassilis Athitsos, Isabelle Guyon (72):1−54, 2016 PDF BibTeX
-
An Emphatic Approach to the Problem of Off-policy Temporal-Difference Learning
Richard S. Sutton, A. Rupam Mahmood, Martha White (73):1−29, 2016 PDF BibTeX
-
Learning Algorithms for Second-Price Auctions with Reserve
Mehryar Mohri, Andres Munoz Medina (74):1−25, 2016 PDF BibTeX
-
Distributed Coordinate Descent Method for Learning with Big Data
-
Scaling-up Empirical Risk Minimization: Optimization of Incomplete $U$-statistics
Stephan Clémençon, Igor Colin, Aurélien Bellet (76):1−36, 2016 PDF BibTeX
-
Iterative Regularization for Learning with Convex Loss Functions
Junhong Lin, Lorenzo Rosasco, Ding-Xuan Zhou (77):1−38, 2016 PDF BibTeX
-
Latent Space Inference of Internet-Scale Networks
Qirong Ho, Junming Yin, Eric P. Xing (78):1−41, 2016 PDF BibTeX
-
Patient Risk Stratification with Time-Varying Parameters: A Multitask Learning Approach
Jenna Wiens, John Guttag, Eric Horvitz (79):1−23, 2016 PDF BibTeX
-
Multiplicative Multitask Feature Learning
Xin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun, Minghu Song (80):1−33, 2016 PDF BibTeX
-
The Benefit of Multitask Representation Learning
Andreas Maurer, Massimiliano Pontil, Bernardino Romera-Paredes (81):1−32, 2016 PDF BibTeX
-
Model-free Variable Selection in Reproducing Kernel Hilbert Space
Lei Yang, Shaogao Lv, Junhui Wang (82):1−24, 2016 PDF BibTeX
-
CVXPY: A Python-Embedded Modeling Language for Convex Optimization
Steven Diamond, Stephen Boyd (83):1−5, 2016 codewebpagePDF BibTeX
-
Lenient Learning in Independent-Learner Stochastic Cooperative Games
-
Structure-Leveraged Methods in Breast Cancer Risk Prediction
Jun Fan, Yirong Wu, Ming Yuan, David Page, Jie Liu, Irene M. Ong, Peggy Peissig, Elizabeth Burnside (85):1−15, 2016 PDF BibTeX
-
LIBMF: A Library for Parallel Matrix Factorization in Shared-memory Systems
Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, Yong Zhuang, Yu-Chin Juan, Chih-Jen Lin (86):1−5, 2016 codePDF BibTeX
-
L1-Regularized Least Squares for Support Recovery of High Dimensional Single Index Models with Gaussian Designs
Matey Neykov, Jun S. Liu, Tianxi Cai (87):1−37, 2016 PDF BibTeX
-
Spectral Ranking using Seriation
Fajwel Fogel, Alexandre d'Aspremont, Milan Vojnovic (88):1−45, 2016 PDF BibTeX
-
Sparsity and Error Analysis of Empirical Feature-Based Regularization Schemes
-
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Manuel Gomez-Rodriguez, Le Song, Hadi Daneshm, Bernhard Schölkopf (90):1−29, 2016 PDF BibTeX
-
Rounding-based Moves for Semi-Metric Labeling
M. Pawan Kumar, Puneet K. Dokania (91):1−42, 2016 PDF BibTeX
-
Rate Optimal Denoising of Simultaneously Sparse and Low Rank Matrices
Dan Yang, Zongming Ma, Andreas Buja (92):1−27, 2016 PDF BibTeX
-
Hierarchical Relative Entropy Policy Search
Christian Daniel, Gerhard Neumann, Oliver Kroemer, Jan Peters (93):1−50, 2016 PDF BibTeX
-
Convex Regression with Interpretable Sharp Partitions
Ashley Petersen, Noah Simon, Daniela Witten (94):1−31, 2016 PDF BibTeX
-
JCLAL: A Java Framework for Active Learning
Oscar Reyes, Eduardo Pérez, María del Carmen Rodríguez-Hernández, Habib M. Fardoun, Sebastián Ventura (95):1−5, 2016 codePDF BibTeX
-
Integrated Common Sense Learning and Planning in POMDPs
-
Cells in Multidimensional Recurrent Neural Networks
Gundram Leifert, Tobias Strau{\ss}, Tobias Gr{ü}ning, Welf Wustlich, Roger Labahn (97):1−37, 2016 PDF BibTeX
-
Learning Taxonomy Adaptation in Large-scale Classification
Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini, Cécile Amblard (98):1−37, 2016 PDF BibTeX
-
How to Center Deep Boltzmann Machines
Jan Melchior, Asja Fischer, Laurenz Wiskott (99):1−61, 2016 PDF BibTeX
-
Control Function Instrumental Variable Estimation of Nonlinear Causal Effect Models
-
Structure Learning in Bayesian Networks of a Moderate Size by Efficient Sampling
Ru He, Jin Tian, Huaiqing Wu (101):1−54, 2016 appendixPDF BibTeX
-
Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing
Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan (102):1−44, 2016 PDF BibTeX
-
Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models
Aki Vehtari, Tommi Mononen, Ville Tolvanen, Tuomas Sivula, Ole Winther (103):1−38, 2016 PDF BibTeX
-
e-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem
Marcela Zuluaga, Andreas Krause, Markus P{ü}schel (104):1−32, 2016 PDF BibTeX
-
Trend Filtering on Graphs
Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani (105):1−41, 2016 PDF BibTeX
-
Multi-Task Learning for Straggler Avoiding Predictive Job Scheduling
Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, R, y Katz (106):1−37, 2016 PDF BibTeX
-
Interleaved Text/Image Deep Mining on a Large-Scale Radiology Database for Automated Image Interpretation
Hoo-Chang Shin, Le Lu, Lauren Kim, Ari Seff, Jianhua Yao, Ronald M. Summers (107):1−31, 2016 PDF BibTeX
-
Distribution-Matching Embedding for Visual Domain Adaptation
Mahsa Baktashmotlagh, Mehrtash Har, i, Mathieu Salzmann (108):1−30, 2016 PDF BibTeX
-
Monotonic Calibrated Interpolated Look-Up Tables
Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov, Wojciech Moczydlowski, Alexander van Esbroeck (109):1−47, 2016 PDF BibTeX
-
Are Random Forests Truly the Best Classifiers?
Michael Wainberg, Babak Alipanahi, Brendan J. Frey (110):1−5, 2016 PDF BibTeX
-
Minimax Adaptive Estimation of Nonparametric Hidden Markov Models
Yohann De Castro, {\'E}lisabeth Gassiat, Claire Lacour (111):1−43, 2016 PDF BibTeX
-
Decrypting “Cryptogenic” Epilepsy: Semi-supervised Hierarchical Conditional Random Fields For Detecting Cortical Lesions In MRI-Negative Patients
Bilal Ahmed, Thomas Thesen, Karen E. Blackmon, Ruben Kuzniekcy, Orrin Devinsky, Carla E. Brodley (112):1−30, 2016 PDF BibTeX
-
Fused Lasso Approach in Regression Coefficients Clustering -- Learning Parameter Heterogeneity in Data Integration
-
The LRP Toolbox for Artificial Neural Networks
Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, Wojciech Samek (114):1−5, 2016 PDF BibTeX
-
Equivalence of Graphical Lasso and Thresholding for Sparse Graphs
-
A Network That Learns Strassen Multiplication
-
Revisiting the Nyström Method for Improved Large-scale Machine Learning
Alex Gittens, Michael W. Mahoney (117):1−65, 2016 PDF BibTeX
-
Improving Structure MCMC for Bayesian Networks through Markov Blanket Resampling
-
Volumetric Spanners: An Efficient Exploration Basis for Learning
-
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Haim Avron, Vikas Sindhwani, Jiyan Yang, Michael W. Mahoney (120):1−38, 2016 PDF BibTeX
-
Variational Dependent Multi-output Gaussian Process Dynamical Systems
-
Multiple Output Regression with Latent Noise
Jussi Gillberg, Pekka Marttinen, Matti Pirinen, Antti J. Kangas, Pasi Soininen, Mehreen Ali, Aki S. Havulinna, Marjo-Riitta Järvelin, Mika Ala-Korpela, Samuel Kaski (122):1−35, 2016 PDF BibTeX
-
The Constrained Dantzig Selector with Enhanced Consistency
Yinfei Kong, Zemin Zheng, Jinchi Lv (123):1−22, 2016 PDF BibTeX
-
Bootstrap-Based Regularization for Low-Rank Matrix Estimation
-
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann, Jukka Cor, er (125):1−47, 2016 PDF BibTeX
-
On Lower and Upper Bounds in Smooth and Strongly Convex Optimization
Yossi Arjevani, Shai Shalev-Shwartz, Ohad Shamir (126):1−51, 2016 PDF BibTeX
-
Dual Control for Approximate Bayesian Reinforcement Learning
Edgar D. Klenske, Philipp Hennig (127):1−30, 2016 PDF BibTeX
-
Multiple-Instance Learning from Distributions
-
An Online Convex Optimization Approach to Blackwell's Approachability
-
A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
-
String and Membrane Gaussian Processes
Yves-Laurent Kom Samo, Stephen J. Roberts (131):1−87, 2016 PDF BibTeX
-
Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision
Byron C. Wallace, Joël Kuiper, Aakash Sharma, Mingxi (Brian) Zhu, Iain J. Marshall (132):1−25, 2016 PDF BibTeX
-
Cross-Corpora Unsupervised Learning of Trajectories in Autism Spectrum Disorders
Huseyin Melih Elibol, Vincent Nguyen, Scott Linderman, Matthew Johnson, Amna Hashmi, Finale Doshi-Velez (133):1−38, 2016 PDF BibTeX
-
Adjusting for Chance Clustering Comparison Measures
Simone Romano, Nguyen Xuan Vinh, James Bailey, Karin Verspoor (134):1−32, 2016 PDF BibTeX
-
Refined Error Bounds for Several Learning Algorithms
-
Synergy of Monotonic Rules
-
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
James Townsend, Niklas Koep, Sebastian Weichwald (137):1−5, 2016 PDF BibTeX
-
CrossCat: A Fully Bayesian Nonparametric Method for Analyzing Heterogeneous, High Dimensional Data
Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, Joshua B. Tenenbaum (138):1−49, 2016 PDF BibTeX
-
Regularized Policy Iteration with Nonparametric Function Spaces
Amir-massoud Farahm, , Mohammad Ghavamzadeh, Csaba Szepesvári, Shie Mannor (139):1−66, 2016 PDF BibTeX
-
Multiscale Adaptive Representation of Signals: I. The Basic Framework
-
Sparse PCA via Covariance Thresholding
-
Large Scale Visual Recognition through Adaptation using Joint Representation and Multiple Instance Learning
Judy Hoffman, Deepak Pathak, Eric Tzeng, Jonathan Long, Sergio Guadarrama, Trevor Darrell, Kate Saenko (142):1−31, 2016 PDF BibTeX
-
Covariance-based Clustering in Multivariate and Functional Data Analysis
Francesca Ieva, Anna Maria Paganoni, Nicholas Tarabelloni (143):1−21, 2016 PDF BibTeX
-
MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions
Rina Foygel Barber, Emil Y. Sidky (144):1−51, 2016 PDF BibTeX
-
True Online Temporal-Difference Learning
Harm van Seijen, A. Rupam Mahmood, Patrick M. Pilarski, Marlos C. Machado, Richard S. Sutton (145):1−40, 2016 PDF BibTeX
-
Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models
Jiahe Lin, Sumanta Basu, Moulinath Banerjee, George Michailidis (146):1−51, 2016 PDF BibTeX
-
Local Network Community Detection with Continuous Optimization of Conductance and Weighted Kernel K-Means
Twan van Laarhoven, Elena Marchiori (147):1−28, 2016 PDF BibTeX
-
Megaman: Scalable Manifold Learning in Python
James McQueen, Marina Meilă, Jacob VanderPlas, Zhongyue Zhang (148):1−5, 2016 codewebpagePDF BibTeX
-
Kernel Estimation and Model Combination in A Bandit Problem with Covariates
-
A General Framework for Consistency of Principal Component Analysis
Dan Shen, Haipeng Shen, J. S. Marron (150):1−34, 2016 PDF BibTeX
-
Conditional Independencies under the Algorithmic Independence of Conditionals
-
Learning Theory for Distribution Regression
Zoltán Szabó, Bharath K. Sriperumbudur, Barnabás Póczos, Arthur Gretton (152):1−40, 2016 PDF BibTeX
-
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su, Stephen Boyd, Emmanuel J. Candès (153):1−43, 2016 PDF BibTeX
-
Importance Weighting Without Importance Weights: An Efficient Algorithm for Combinatorial Semi-Bandits
-
New Perspectives on k-Support and Cluster Norms
Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos (155):1−38, 2016 PDF BibTeX
-
Minimum Density Hyperplanes
Nicos G. Pavlidis, David P. Hofmeyr, Sotiris K. Tasoulis (156):1−33, 2016 PDF BibTeX
-
Theoretical Analysis of the Optimal Free Responses of Graph-Based SFA for the Design of Training Graphs
Alberto N. Escalante-B., Laurenz Wiskott (157):1−36, 2016 PDF BibTeX
-
Universal Approximation Results for the Temporal Restricted Boltzmann Machine and the Recurrent Temporal Restricted Boltzmann Machine
-
Exploration of the (Non-)Asymptotic Bias and Variance of Stochastic Gradient Langevin Dynamics
Sebastian J. Vollmer, Konstantinos C. Zygalakis, Yee Whye Teh (159):1−48, 2016 PDF BibTeX
-
A General Framework for Constrained Bayesian Optimization using Information-based Search
José Miguel Hern\'{a}ndez-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman, Zoubin Ghahramani (160):1−53, 2016 PDF BibTeX
-
Optimal Estimation and Completion of Matrices with Biclustering Structures
Chao Gao, Yu Lu, Zongming Ma, Harrison H. Zhou (161):1−29, 2016 PDF BibTeX
-
The Teaching Dimension of Linear Learners
-
Augmentable Gamma Belief Networks
Mingyuan Zhou, Yulai Cong, Bo Chen (163):1−44, 2016 PDF BibTeX
-
Optimal Estimation of Derivatives in Nonparametric Regression
Wenlin Dai, Tiejun Tong, Marc G. Genton (164):1−25, 2016 PDF BibTeX
-
Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing
-
Joint Structural Estimation of Multiple Graphical Models
-
Support Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes
Yuanjia Wang, Tianle Chen, Donglin Zeng (167):1−37, 2016 PDF BibTeX
-
Stable Graphical Models
Navodit Misra, Ercan E. Kuruoglu (168):1−36, 2016 PDF BibTeX
-
Bounding the Search Space for Global Optimization of Neural Networks Learning Error: An Interval Analysis Approach
Stavros P. Adam, George D. Magoulas, Dimitrios A. Karras, Michael N. Vrahatis (169):1−40, 2016 PDF BibTeX
-
mlr: Machine Learning in R
Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, Zachary M. Jones (170):1−5, 2016 PDF BibTeX
-
Feature-Level Domain Adaptation
Wouter M. Kouw, Laurens J.P. van der Maaten, Jesse H. Krijthe, Marco Loog (171):1−32, 2016 PDF BibTeX
-
Semiparametric Mean Field Variational Bayes: General Principles and Numerical Issues
-
Online PCA with Optimal Regret
Jiazhong Nie, Wojciech Kotlowski, Manfred K. Warmuth (173):1−49, 2016 PDF BibTeX
-
Efficient Computation of Gaussian Process Regression for Large Spatial Data Sets by Patching Local Gaussian Processes
-
bandicoot: a Python Toolbox for Mobile Phone Metadata
Yves-Alexandre de Montjoye, Luc Rocher, Alex Sandy Pentland (175):1−5, 2016 PDF BibTeX
-
Input Output Kernel Regression: Supervised and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels
Céline Brouard, Marie Szafranski, Florence d'Alché-Buc (176):1−48, 2016 PDF BibTeX
-
A Note on the Sample Complexity of the Er-SpUD Algorithm by Spielman, Wang and Wright for Exact Recovery of Sparsely Used Dictionaries
-
The Asymptotic Performance of Linear Echo State Neural Networks
Romain Couillet, Gilles Wainrib, Harry Sevi, Hafiz Tiomoko Ali (178):1−35, 2016 PDF BibTeX
-
On the Consistency of the Likelihood Maximization Vertex Nomination Scheme: Bridging the Gap Between Maximum Likelihood Estimation and Graph Matching
Vince Lyzinski, Keith Levin, Donniell E. Fishkind, Carey E. Priebe (179):1−34, 2016 PDF BibTeX
-
Characteristic Kernels and Infinitely Divisible Distributions
-
Consistency of Cheeger and Ratio Graph Cuts
Nicolás García Trillos, Dejan Slep\v{c}ev, James von Brecht, Thomas Laurent, Xavier Bresson (181):1−46, 2016 PDF BibTeX
-
Jointly Informative Feature Selection Made Tractable by Gaussian Modeling
Leonidas Lefakis, François Fleuret (182):1−39, 2016 PDF BibTeX
-
Learning with Differential Privacy: Stability, Learnability and the Sufficiency and Necessity of ERM Principle
Yu-Xiang Wang, Jing Lei, Stephen E. Fienberg (183):1−40, 2016 PDF BibTeX
-
fastFM: A Library for Factorization Machines
-
The Factorized Self-Controlled Case Series Method: An Approach for Estimating the Effects of Many Drugs on Many Outcomes
Ramin Moghaddass, Cynthia Rudin, David Madigan (185):1−24, 2016 PDF BibTeX
-
Electronic Health Record Analysis via Deep Poisson Factor Models
Ricardo Henao, James T. Lu, Joseph E. Lucas, Jeffrey Ferranti, Lawrence Carin (186):1−32, 2016 PDF BibTeX
-
Low-Rank Doubly Stochastic Matrix Decomposition for Cluster Analysis
Zhirong Yang, Jukka Cor, er, Erkki Oja (187):1−25, 2016 PDF BibTeX
-
A New Algorithm and Theory for Penalized Regression-based Clustering
Chong Wu, Sunghoon Kwon, Xiaotong Shen, Wei Pan (188):1−25, 2016 PDF BibTeX
-
Classification of Imbalanced Data with a Geometric Digraph Family
-
A Variational Approach to Path Estimation and Parameter Inference of Hidden Diffusion Processes
Tobias Sutter, Arnab Ganguly, Heinz Koeppl (190):1−37, 2016 PDF BibTeX
-
One-class classification of point patterns of extremes
Stijn Luca, David A. Clifton, Bart Vanrumste (191):1−21, 2016 PDF BibTeX
-
On the Influence of Momentum Acceleration on Online Learning
Kun Yuan, Bicheng Ying, Ali H. Sayed (192):1−66, 2016 PDF BibTeX
-
Data-driven Rank Breaking for Efficient Rank Aggregation
-
Optimal Learning Rates for Localized SVMs
-
Bipartite Ranking: a Risk-Theoretic Perspective
Aditya Krishna Menon, Robert C. Williamson (195):1−102, 2016 PDF BibTeX
-
Bayesian group factor analysis with structured sparsity
Shiwen Zhao, Chuan Gao, Sayan Mukherjee, Barbara E Engelhardt (196):1−47, 2016 PDF BibTeX
-
Machine Learning in an Auction Environment
Patrick Hummel, R. Preston McAfee (197):1−37, 2016 PDF BibTeX
-
Wavelet decompositions of Random Forests - smoothness analysis, sparse approximation and applications
-
Mutual Information Based Matching for Causal Inference with Observational Data
-
Online Trans-dimensional von Mises-Fisher Mixture Models for User Profiles
Xiangju Qin, Pádraig Cunningham, Michael Salter-Townshend (200):1−51, 2016 PDF BibTeX
-
Multivariate Spearman's $\rho$ for Aggregating Ranks Using Copulas
-
Nonparametric Network Models for Link Prediction
-
Guarding against Spurious Discoveries in High Dimensions
-
Bayesian Graphical Models for Multivariate Functional Data
Hongxiao Zhu, Nate Strawn, David B. Dunson (204):1−27, 2016 PDF BibTeX
-
Neural Autoregressive Distribution Estimation
Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, Hugo Larochelle (205):1−37, 2016 PDF BibTeX
-
ERRATA: On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift Algorithm
Ery Arias-Castro, David Mason, Bruno Pelletier (206):1−4, 2016 PDF BibTeX
-
Modelling Interactions in High-dimensional Data with Backtracking
-
Choice of V for V-Fold Cross-Validation in Least-Squares Density Estimation
-
Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition
Shusen Wang, Zhihua Zhang, Tong Zhang (209):1−49, 2016 PDF BibTeX
-
Multi-Objective Markov Decision Processes for Data-Driven Decision Support
Daniel J. Lizotte, Eric B. Laber (210):1−28, 2016 PDF BibTeX
-
Measuring Dependence Powerfully and Equitably
Yakir A. Reshef, David N. Reshef, Hilary K. Finucane, Pardis C. Sabeti, Michael Mitzenmacher (211):1−63, 2016 PDF BibTeX
-
Neyman-Pearson Classification under High-Dimensional Settings
Anqi Zhao, Yang Feng, Lie Wang, Xin Tong (212):1−39, 2016 PDF BibTeX
-
A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares
Garvesh Raskutti, Michael W. Mahoney (213):1−31, 2016 PDF BibTeX
-
Learning Planar Ising Models
Jason K. Johnson, Diane Oyen, Michael Chertkov, Praneeth Netrapalli (214):1−26, 2016 PDF BibTeX
-
Newton-Stein Method: An Optimization Method for GLMs via Stein's Lemma
-
Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing
-
Multi-scale Classification using Localized Spatial Depth
Subhajit Dutta, Soham Sarkar, Anil K. Ghosh (217):1−30, 2016 PDF BibTeX
-
On Bayes Risk Lower Bounds
Xi Chen, Adityan, Guntuboyina, Yuchen Zhang (218):1−58, 2016 PDF BibTeX
-
Weak Convergence Properties of Constrained Emphatic Temporal-difference Learning with Constant and Slowly Diminishing Stepsize
-
RLScore: Regularized Least-Squares Learners
-
Stability and Generalization in Structured Prediction
Ben London, Bert Huang, Lise Getoor (221):1−52, 2016 PDF BibTeX
-
Composite Multiclass Losses
Robert C. Williamson, Elodie Vernet, Mark D. Reid (222):1−52, 2016 PDF BibTeX
-
Learning Latent Variable Models by Pairwise Cluster Comparison: Part I - Theory and Overview
-
GenSVM: A Generalized Multiclass Support Vector Machine
Gerrit J.J. van den Burg, Patrick J.F. Groenen (224):1−42, 2016 PDF BibTeX
-
Scalable Approximate Bayesian Inference for Outlier Detection under Informative Sampling
-
Approximate Newton Methods for Policy Search in Markov Decision Processes
Thomas Furmston, Guy Lever, David Barber (226):1−51, 2016 PDF BibTeX
-
Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case
-
Linear Convergence of Randomized Feasible Descent Methods Under the Weak Strong Convexity Assumption
Chenxin Ma, Rachael Tappenden, Martin Takáč (228):1−24, 2016 PDF BibTeX
-
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees
Michael Chichignoud, Johannes Lederer, Martin J. Wainwright (229):1−20, 2016 PDF BibTeX
-
Learning Latent Variable Models by Pairwise Cluster Comparison: Part II - Algorithm and Evaluation
-
A Characterization of Linkage-Based Hierarchical Clustering
Margareta Ackerman, Shai Ben-David (231):1−17, 2016 PDF BibTeX
-
Integrative Analysis using Coupled Latent Variable Models for Individualizing Prognoses
-
An Error Bound for L1-norm Support Vector Machine Coefficients in Ultra-high Dimension
-
Blending Learning and Inference in Conditional Random Fields
Tamir Hazan, Alexander G. Schwing, Raquel Urtasun (234):1−25, 2016 PDF BibTeX
-
Distributed Submodular Maximization
Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause (235):1−44, 2016 PDF BibTeX
-
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier, James Ridgway, Nicolas Chopin (236):1−41, 2016 PDF BibTeX